Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Уравнение волны

Механические волны

Механическая волна представляет собой процесс распространения механических колебаний в пространстве. Из-за наличия упругих связей между частицами среды перемещения одной из частиц при возникновении колебаний вызывает движение соседних частиц - этот процесс распространяется в пространстве с некоторой скоростью.

Волна называется продольной, если направление перемещения частиц среды совпадает с направлением распространения волны. Если эти направления взаимно перпендикулярны, то такая волна называется поперечной. Продольные механические волны могут распространяться в любых средах (кроме вакуума), а поперечные - только в твердых телах.

Рассмотренные выше математические выражения, описывающие характер колебаний, определяют смещение как функцию одной переменной - времени. Смещение S в волне зависит уже от двух переменных - времени t и пространственной координаты х - и обладает поэтому двойной периодичностью.

Для получения уравнения волны, то есть аналитического выражения функции двух переменных S = f (t, x), представим что, в некоторой точке пространства возникают гармонические колебания с круговой частотой w и начальной фазой, для упрощения равной нулю (см. рис.8). Смещение в точке М: Sм = A sin w t, где А - амплитуда. Поскольку частицы среды, заполняющие пространство, связаны между собой, то колебания от точки М распространяются вдоль оси х со скоростью v. Через некоторое время D t они достигают точки N. Если в среде отсутсвует затухание, то смещение в этой точке имеет вид: SN = A sin w (t - D t), т.е. колебания запаздывают на время D t относительно точки M. Поскольку , то заменив произвольный отрезок MN координатой х, получим уравнение волны в виде:

(23)

Учитывая, что (где Т - период), а длина волны l = v T, формулу (23) можно записать в виде:

(24) Уравнение волны (23) или (24) позволяет определить в любой момент времени t смещение любой точки, имеющей координату х.

<== предыдущая лекция | следующая лекция ==>
Принципы использования гармонического анализа для обработки диагностических данных | Энергия волны, поток энергии волны, интенсивность. Вектор Умова
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 286; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.