КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Энтропия и информация
Рассмотрим некоторую систему X, над которой производится измерение, и оценим информацию, получаемую в результате того, что состояние системы X становится полностью известным (погрешность измерений равна нулю). До проведения измерений априорная энтропия системы была Н(Х), после измерений энтропия стала равной нулю, если в результате измерения мы нашли истинное значение величины. Обозначим Ix информацию, получаемую в результате измерений. Она равна уменьшению энтропии IХ = H(X) – H(X/xи) = 0 или IX = H(X), т. е. количество информации, приобретаемое при полном выяснении состояния некоторой физической системы, равно энтропии этой системы. С учетом формулы (1.24) (1.26) где рi= р(Х Þ xi). Формула (1.26) означает, что информация Ix есть осредненное по всем состояниям системы значение логарифма вероятности состояния с обратным знаком. Действительно, для получения Ix каждое значение log pi,- (логарифм вероятности i-го значения) со знаком минус множится на вероятность этого состояния и все такие произведения складываются. Естественно каждое отдельное слагаемое - log рi следует рассматривать как частную информацию, получаемую от отдельного измерения, состоящего в том, что система X находится в состоянии Хi. Обозначим эту информацию Ixi. Ixi = - log pi (1.27) Тогда информация Ix представится как средняя (или полная) информация, получаемая от всех возможных отдельных измерений с учетом их вероятностей. Так как все числа рi не больше единицы, то, как частная информация Ixi, так и полная Ix не могут быть отрицательными. Если все возможные состояния системы одинаково вероятны (p1 = Р2= … =рп=1/п), то частная информация от каждого отдельного измерения Ixi = - log p = log n равна средней (полной) информации (1.28)
6.3. Применение основных положений теории информации для характеристики процесса измерения
Точность измерений обычно характеризуется числовым значением полученных при измерении или априорно известных погрешностей измерений. Пусть в результате однократного измерения значения измеряемой величины X результат измерения равен хи. Если известно, но, что средство измерения имеет случайную абсолютную погрешность в пределах ± D, то не следует утверждать, что действительное значение измеряемой величины равно хи. Можно лишь утверждать, что это значение лежит в полосе xи ± D. Незнание истинного значения измеряемой величины сохраняется после получения результата измерения хи, но теперь оно характеризуется не исходной энтропией Н(Х), а лишь энтропией разброса действительного значения X величины относительно полученного результата xи. Эта условная энтропия Н(Х/хи) определяется погрешностью данного средства измерения. В теории информации факт проведения измерений в диапазоне от Хн до Хв означает, что при использовании данного средства измерения может быть получен результат измерений xи только в пределах от Хн до Хв. Другими словами, вероятность получения значений хи, меньших Хн и больших Хв, равна нулю. Вероятность же получения результата хи в пределах от Хн до Хв равна единице. Если предположить, что плотность распределения различных значений измеряемой величины вдоль всей шкалы средства измерения одинакова, то с точки зрения теории информации наше знание о значении измеряемой величины до измерения может быть представлено графиком распределения плотности f1(x) вдоль шкалы значений (рис. 16).
Рис. 16. Плотность распределения данного средства измерения
Поскольку вероятность получения результата измерений xи в пределах от Хн до Хв равна единице, то площадь под кривой f1 (x) должна быть равна единице. При равномерном распределении плотности вероятности После проведения измерения из-за наличия погрешности средства измерения (± D) действительное значение измеряемой величины X лежит в пределах от Хи - D до Хи + D, т. е. в пределах участка 2D. С информационной точки зрения интерпретация результата измерения состоит в том, чтобы область неопределенности простиралась от Хн до Xв и характеризовалась сравнительно небольшой плотностью распределения f1(x). После измерения неопределенность уменьшилась до величины 2 D, а плотность распределения увеличилась до величины f2(x) с учетом того, что D << (Xв –Xн), что и отражено на рис. 16. Получение какой-либо информации об интересующей нас величине заключается в конечном счете в уменьшении неопределенности ее значения. Определим количество информации в общем случае как Ix=H(Х)-Н(Х/хи), (1.29) где Н(Х) - априорная энтропия; Н(Х/хи) - условная энтропия. В нашем примере с равномерным законом распределения Полученное количество информации (1.30) Данная операция, которая обычно используется при определении относительной погрешности измерения, характеризует один из основных приемов анализа информационных свойств измерений.
Глава 7. Организационно-правовые основы метрологической деятельности
Дата добавления: 2014-01-04; Просмотров: 603; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |