Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Биогеохимический цикл серы




Антропогенное влияние на углеродный цикл

Четвертичный период

История изменения содержания СО2 и СН4 в атмосфере в четвертичном периоде известна относительно хорошо из изучения покровных ледников Гренландии и Антарктиды (в ледниках зафиксирована история примерно до 800 тыс. лет), лучше, чем для какого-либо периода истории Земли. Четвертичный период (последние 2,6 млн лет) отличается от других геологических периодов циклическими эпохами оледенений и межледниковий. Эти изменения климата чётко коррелированны с изменениями углеродного цикла. Однако даже в этом наиболее изученном случае нет полной ясности в причинах циклических изменений и связи геохимических изменений с климатическими.

Четвертичный период ознаменовался многократными следовавшими друг за другом оледенениями. Атмосферное содержание СО2 и СН4 менялось согласованно с вариациями температуры и между собой. При этом из этой палеоклиматической записи следуют следующие наблюдения:

  1. Все ледниково-межледниковые циклы последнего миллиона лет имеют периодичность около 100 тыс. лет, в интервале времени 1—2,6 млн лет назад характерна периодичность около 41 тыс. лет.
  2. Каждый ледниковый период сопровождается понижением атмосферной концентрации СО2 и СН4 (характерные содержания 200 ppm и 400 ppb соответственно)
  3. Межледниковые периоды начинаются резким, в геологическом масштабе мгновенным, увеличением концентраций СО2 и СН4.
  4. Во время межледниковых периодов между северным и южным полушарием существует градиент концентраций СН4. Составы воздуха, полученные из ледников Гренландии, систематически больше антарктических на 40—50 ppb. Во время ледниковых эпох концентрация метана в обоих полушариях падает и выравнивается.
  5. Во время ледниковых периодов уменьшается содержание лёгкого изотопа углерода.

Некоторые из этих фактов могут быть объяснены современной наукой, но вопрос причинно-следственных связей, несомненно, пока не имеет ответа.

Развитие оледенения приводит к уменьшению площади и массы наземной биосферы. Так как все растения избирательно поглощают из атмосферы лёгкий изотоп углерода, то при наступлении ледников весь этот облегчённый углерод поступает в атмосферу, а через неё и в океан. Таким образом было объяснено изменение изотопного состава углерода.

Деятельность людей привнесла новые изменения в цикл углерода. С 1850 года в результате сжигания ископаемого топлива концентрация СО2 в атмосфере увеличилась на 31 %, а метана на 149 %.

Сера также является одним из элементов, играющих чрезвычайно важную роль в круговороте веществ биосферы. Она относится к числу химических элементов, наиболее необходимых для живых организмов. В частности, она является компонентом аминокислот. Она предопределяет важные биохимические процессы живой клетки, является незаменимым компонентом питания растений и микрофлоры. Соединения серы участвуют в формировании химического состава почв, в значительных количествах присутствуют в подземных водах, что играет решающую роль в процессах засоления почв.

В засоленных почвах содержание серы может достигать значений, измеряемых целыми процентами. Таким образом, основным резервуаром, из которого она черпается живыми организмами, является литосфера. Устойчивое существование сернистых соединений в условиях современной атмосферы Земли, содержащей свободный кислород и пары Н2О, невозможно. Сероводород (H2S) в кислородной среде окисляется, а кислородные соединения серы, реагируя с Н2О, образуют серную кислоту H2SO4, которая выпадает на поверхность Земли в составе кислотных дождей. Поэтому оксиды серы SOх, хотя и могут усваиваться растениями непосредственно из атмосферы, существенной роли в круговороте серы этот процесс не играет.

Сера имеет несколько изотопов, из которых в природных соединениях наиболее распространены S32 (>95%) и S34 (4,18%). В результате биологических и биогеохимических процессов происходит изменение в соотношении этих изотопов в сторону увеличения содержаний более легкого изотопа в верхних гумусовых горизонтах почв.

В составе земной коры соединения серы существуют, в основном, в двух минеральных формах: сульфидной (соли сероводородной кислоты) и сульфатной (соли серной кислоты). Редко встречается самородная сера, которая неустойчива и склонна, в зависимости, от значений окислительно-восстановительного потенциала среды, формировать или кислородные, или водородные соединения.

Первичной, глубинной по происхождению, минеральной формой нахождения серы в земной коре, является сульфидная. Сульфиды на земной поверхности, как правило, окисляются, и в результате этого сера входит в состав сульфатных соединений. Сульфаты обладают достаточно хорошей растворимостью, и сера в географической оболочке активно мигрирует в водных растворах в составе сульфат-иона SO42-.

Именно в этой, сульфатной форме сера, в составе водных растворов, эффективно усваивается растениями, а далее – животными организмами. Усвоению способствует то, что сульфатные соединения серы способны накапливаться в почвах, участвуя в процессах обменной сорбции и входя при этом в состав почвенного поглощающего комплекса (ППК).

Разложение органического вещества в кислородной среде приводит к возвращению серы в почву и природные воды. Сульфатная сера мигрирует в водных растворах, и может снова использоваться растениями. Если же разложение идёт в бескислородной среде, ведущую роль играет деятельность серобактерий, которые восстанавливают SO42- до H2S. Сероводород выделяется в атмосферу, где окисляется и возвращается в другие компоненты биосферы в сульфатной форме. Часть серы в восстановительной обстановке может связываться в сульфидных соединениях, которые, при возобновлении доступа кислорода, снова окисляются и переходят в сульфатную форму.

Биогеохимический цикл серы состоит из 4 стадий (рис. 5):

1. усвоение соединений серы живыми организмами (растениями и бактериями) и включение серы в состав белков и аминокислот.

2. Превращение органической серы живыми организмами (животными и бактериями) в конечный продукт – сероводород.

3. Окисление минеральной серы живыми организмами (серобактериями, тионовыми бактериями) в процессе сульфатредукции. На этой стадии происходит окисление сероводорода, элементарной серы, ее тио- и тетрасоединений.

4. Восстановление минеральной серы живыми организмами (бактериями) в процессе десульфофикации до сероводорода. Таким образом, важнейшим звеном всего биогеохимического цикла серы в биосфере является биогенное образование сероводорода.

Рис. 5. Схема биогеохимического цикла серы

Изъятие серы из биосферного круговорота происходит в результате накопления сульфатных отложений (в основном гипсовых), слои и линзы которых становятся компонентами литосферы, компенсация потерь в процессах вулканизма (поступление H2S и SOx в атмосферу, а оттуда, с атмосферными осадками – на поверхность Земли). А во-вторых, в результате деятельности термальных вод, с которыми в верхние горизонты земной коры и на дно Мирового океана поступают сульфидные соединения.

Таким образом, к характерным особенностям круговорота серы можно отнести второстепенную роль процессов атмосферной миграции, а также многообразие форм нахождения, обусловленное переходом её из сульфидных форм в сульфатные и обратно, в зависимости от изменения окислительно-восстановительных условий.

Промышленные процессы выносят в атмосферу большое количество серы.

Таким образом, антропогенное поступление серы в биосферу существенно изменяет круговорот этого элемента, а приход серы в биосферу превышает ее расход, в результате чего, должно происходить постепенное ее накопление.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1986; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.