КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Локальная и интегральная формулы Лапласа
Пользоваться формулой Бернулли при больших значениях n достаточно трудно, так как формула требует выполнения действий над очень большими числами. Пример. Если , , ; , то вероятность того, что при n испытаниях событие A осуществляется ровно раз и не осуществляется, раз примет вид: . При вычислении факториала для больших чисел можно пользоваться специальными таблицами логарифмов факториалов, но из-за округлений в итоге окончательный результат может значительно отличаться от истинного. В этом случае удобно пользоваться формулами Лапласа. Локальная теорема Лапласа. Если вероятность появления события A в каждом испытании постоянна и отлична от нуля и единицы, то вероятность того, что событие A появиться в испытаниях ровно раз, приближенно равна (тем точнее, чем больше ) значению функции: (1) – локальная формула Лапласа, где , . Замечание. При нахождении значений функции для отрицательных значений аргументов следует иметь в виду, что – четная функция: . Для вычисления значений функции пользуются специальной таблицей (см. Приложение 2). Задача 1. Найти вероятность того, что при 400 испытаниях событие наступит ровно 104 раза, если вероятность его появления в каждом испытании равна 0,2. Решение. По условию, ; ; , тогда q = 1 – 0,2 = 0,8. Применим локальную формулу Лапласа: ; . Тогда . Интегральная теорема Лапласа. Если вероятность p наступления события A в каждом испытании постоянна и отлична от нуля и единицы, то вероятность того, что событие Aпоявится в nиспытаниях от k1 до k2 раз, приближенно равна: (2), где , , – «неберущийся» интеграл. Функция называется функцией Лапласа, при решении используют соответствующую таблицу значений для функции (см. Приложение 3). Замечание. При нахождении значений функции и для отрицательных значений аргументов следует иметь в виду, что – четная: =, а – нечетная: = . Отметим еще, что приближенными формулами Лапласа (1) и (2) на практике пользуются в случае, если npq ³ 10. Если же npq < 10, то эти формулы приводят к довольно большим погрешностям. Задача 2. Вероятность поражения мишени стрелком при одном выстреле равна 0,75. Найти вероятность того, что при 100 выстрелах мишень будет поражена: а) не менее 70 и не более 80 раз; б) не более 70 раз. Решение. а) По условию k 1 = 70, k 2 = 80, , . Тогда , , , . Значение функции Лапласа находим по таблице. Мы получили значение 1,1547, в таблице даны значения Ф (1,15) = 0,3749 и Ф (1,16) = 0,3770. В качестве ответа можно взять любое из этих значений или их среднеарифметическое { ответ будет приблизительно одинаковый }: р 100(70;80)» 2Ф(1,1547)» 2(Ф(1,15) + Ф(1,16))/2 = 0,7519. б) По условию k 1 = 0, k 2 = 70. Тогда , р 100()» Ф (x 2) – Ф (x 1) = Ф (–1,1547) – Ф (–17,32) = Ф (17,32) – Ф (1,1547). Значение функции Лапласа находим по таблице. В таблице приведены значения интеграла лишь для , тогда для можно принять значение функции Лапласа . р 100(0;70)» 0,5 – 0,3749 = 0,1251.
Дата добавления: 2014-01-04; Просмотров: 1372; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |