Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Электрический момент ядра




Электрический заряд ядра Z не дает полного представления о распределении протонов в ядре. Более сложными электрическими характеристиками ядра является дипольный и квадрупольный моменты ядра.

Диполем называется система из двух равных по величине зарядов q разного знака, жестко закрепленных на расстоянии d. Такая система, имея равный нулю электрический заряд, обладает свойством ориентироваться по направлению электрического поля. Так как отрицательных зарядов в ядре нет, то смещение положительного заряда (протонов) относительно нулевого (нейтронов) вызывает появление дипольного момента и ядро поворачивается в электрическом поле относительно центра инерции. Обычно рассматривают проекцию дипольного момента ядра на ось Z, совпадающую с направлением внешнего электрического поля. По определению

(1.6.28)

 
где - распределение электрического заряда относительно центра инерции ядра (см. рис.1.6.4), ‑ бесконечно малый заряд в точке , z – проекция радиус-вектора выбранного объема на ось Z, а интегрирование ведется по всему объему ядра. В стационарном (не возбужденном) состоянии нет никаких причин, которые могли бы вызывать в ядре смещение центра масс протонов относительно центра масс нейтронов. Поэтому электрический дипольный момент ядер в стационарном состоянии равен нулю. Сильное электрическое поле может вызывать поляризацию протонов в ядре и возникновение дипольного момента. Например, электромагнитное поле γ-кванта может вызывать периодическое смещение протонов относительно нейтронов и возникновение дипольных колебаний протонов в ядре.

Другой характеристикой распределения электрического заряда в ядре является квадрупольный электрический момент Q, который не равен нулю для многих ядер, находящихся даже в стационарных состояниях. Квадрупольный момент определяет степень взаимодействие ядра с неоднородным электрическим полем. Электрическим квадрупольным моментом Q ядра называется величина, определяемая соотношением

е (1.6.29)

где использованы те же обозначения, как и в (1.6.28), а ось Z выбирается таким образом, чтобы величина Q была максимальной по абсолютной величине (совпадала с осью симметрии ядра); . Для сферически симметричного распределения электрического заряда x 2 = y 2 = z 2 и подынтегральная в (1.6.29) обращается в нуль и Q = 0. Таким образом, квадрупольный момент является мерой отклонения распределения электрического заряда от сферически симметричного и определяет степень вытянутости ядра относительно оси Z. Величина Q положительна для вытянутых ядер и отрицательна для сплюснутых. Квадрупольные момент имеет размерность площади и часто измеряется в единицах барн, 1 барн = 10‑24 см 2. В таблице 1.6.2 приведены величины Q для нескольких ядер. Существуют ядра как вытянутые, так и сплюснутые. Если предположить, что вытянутые ядра являются эллипсоидами вращения, то их степень вытянутости можно характеризовать величиной , где а – размер ядра вдоль оси Z, а b – максимальный размер перпендикулярно оси Z. Обычно величина δ ≈ 1,02 ÷ 1,04, однако у ряда тяжелых ядер она достигает 1,2 ÷ 1,5. Поэтому с хорошей точностью можно оценивать радиус ядра с помощью формулы (1.5.2), подразумевая при этом средний радиус . Все четно-четные ядра (ядра с четным числом протонов и нейтронов, а, следовательно, и все магические ядра) имеют сферическую форму (Q = 0), которая, таким образом, соответствует наиболее устойчивым ядрам.

Для экспериментального определения квадрупольных моментов используются те же методы, что и для измерения магнитных моментов - изучение сверхтонкой структуры оптических линий в спектрах и радиочастотные методы. Взаимодействие квадрупольного момента с градиентом внутриатомного электрического поля, позволяет выяснить нарушение правила интервалов (1.6.24) и отделить расщепление спектральных линий, связанное с наличием квадрупольного электрического момента у ядра, с расщеплением, вызванным магнитным моментом ядра, и определить квадрупольный момент ядра.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 778; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.