КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Ядерные силы
Ядерные силы относятся к так называемым сильным взаимодействиям и существенно отличаются по своим свойствам от электромагнитных и гравитационных. В полной мере природа ядерных сил до настоящего времени не выяснена. Даже для простейшей системы из двух нуклонов неизвестна зависимость ядерных сил от расстояния между нуклонами. Короткодействие ядерных сил и свойство насыщения, многообразие свойств ядерных сил не позволяют создать законченную теорию, подобную квантовой электродинамики для расчета свойств атомов. Перечислим свойства ядерных сил и укажем на экспериментальные факты, подтверждающие эти свойства. 1. Огромная энергия связи нуклонов в ядре свидетельствует о том, что между нуклонами действуют силы притяжения, что подтверждается существованием стабильных ядер. Эти силы самые интенсивные в природе. Например, энергия связи простейшего ядра - 4Не - составляет 2,22 МэВ, а простейшего атома – водорода – равна 13,6 эВ. 2. Уже первые опыты Резерфорда показали, что ядерные силы – короткодействующие. Это свойство ядерных сил подтверждается многочисленными данными по измерению размеров атомных ядер. Ядерные силы удерживают нуклоны на расстояниях ~ (1,2 ÷ 1,4) ·10‑13 см. При расстояниях между нуклонами, превышающих 2·10‑13 см действие ядерных сил не обнаруживается, тогда как на расстояниях меньших 1·10‑13 см, притяжение нуклонов заменяется отталкиванием. 3. На расстояниях, где между протонами действуют ядерные силы притяжения, они превосходят кулоновские силы отталкивания приблизительно в 100 раз, действие которых на этих расстояниях также очень велико. Короткодействие ядерных сил приводит к резкому разграничению областей, где действуют только дальнодействующие кулоновские силы, или только ядерные, которые подавляют кулоновские силы на малых расстояниях. На рис.1.9.1 а показана потенциальная энергия взаимодействия протона с тремя различными ядрами: легким (
где Z – заряд ядра, z - заряд налетающей частицы. На расстоянии от ядра, где начинает проявляться действие ядерных силы притяжения, потенциальная энергия круто падает на расстояниях ~ 10-13 см, что соответствует большой интенсивности ядерных сил (сила пропорциональна антиградиенту потенциальной энергии dU/dr). Внутри ядра потенциальная энергия отрицательна (см. рис. 1.4.1) и представлена некоторой средней величиной (дно потенциальной ямы). На рисунке 1.9.1 а пунктиром показаны также удельные энергии связи рассматриваемых ядер. Радиусы ядер на этом же рисунке подсчитаны по формуле (1.5.2). Энергия ядерного взаимодействия на рисунке 1.9.1 а характеризует только центрально-симметричную часть ядерных сил и не учитывает зависимость ядерных сил от спина (см. ниже п.4) и нецентральный характер ядерных сил (см. ниже п.7).
Таким образом, заряженная частица для сближения с ядром или при вылете из ядра должна преодолеть кулоновский барьер. На рис. 1.9.1 б приведена модельная потенциальная функция, где ядро и частица представлены в виде точечных зарядов. Высота кулоновского барьера в этом случае составит
Ядерное взаимодействие между ядром и частицей аппроксимируется отвесной линией. Нейтроны не имеют электрического заряда и потому беспрепятственно сближаются с ядрами, т.е. для них отсутствует кулоновский барьер (жирная горизонтальная линия на рис. 1.9.1 б в области r > R), а ядерный потенциал у нейтрона оказывается таким же (с точностью до различия в массах), как и у протона (см. ниже п.5). 4. Ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов и от взаимной ориентации орбитального и спинового моментов каждого из нуклонов. Это означает, что внутри ядра следует учитывать спин-орбитальное взаимодействие нуклонов. Зависимость ядерных сил от спина хорошо видна на примере дейтона, который имеет спин, равный единице, т.е. нейтрон и протон могут существовать в связанном состоянии только при параллельных спинах. При антипараллельных спинах нейтрон и протон не образует связанной системы, но притяжение между ними все же существует, что приводит к значительной эффективности рассеяния нейтронов на протонах. Поэтому рассеяние нейтронов на водородосодержащих средах оказывается также эффективным и широко используется для замедления нейтронов в ядерных реакторах. Если нуклоны одноименные, то наибольшее притяжение между ними наблюдается в случае антипараллельной ориентации их спинов. Как раз этой особенностью объясняется эффект спаривания нуклонов (см. §1.4 п.3).
Из рисунка видно, что соответствующие уровни энергии (энергетические спектры ядер) очень близки, а спины и четности уровней совпадают. Однако, строго говоря, приведенная информация не является прямым доказательством зарядовой независимости ядерных сил, так как сопоставляются не процессы парных взаимодействий между нуклонами отдельных типов, а рассматриваются свойства сложных нуклонных систем. Непосредственное доказательство гипотезы о зарядовой независимости ядерных сил получено в прямых опытах по изучению (р – р) и (n – р) рассеяния. 6. Постоянство средней энергии связи на нуклон (рис. 1.4.2) указывает на свойство насыщения ядерных сил. Это означает, что каждый нуклон в ядре взаимодействует с ограниченным числом соседних нуклонов. Свойство насыщения ядерных сил имеет парный характер. Например, пара нейтронов и пара протонов образует одно из самых прочных легких ядер 7. Ядерные силы имеют нецентральный характер. Центральными называются силы, которые действуют вдоль прямой, соединяющей взаимодействующие тела. Центральные силы могут зависеть от относительной ориентации спинов частиц, но не должны зависеть от ориентации спинов относительно линии, соединяющей частицы. Рассмотрим некоторые свойства простейшего ядра
Превращение, описываемое уравнением (1.9.4), сопровождается нарушением закона сохранения энергии:
где
Если до истечения времени
виртуальный фотон будет поглощен этим же или другим электроном, то нарушение закона сохранения энергии не может быть обнаружено. Если же электрону сообщить дополнительную энергию (от электрического поля или при соударении с другим зарядом), то может быть испущен реальный фотон, время существования которого неограниченно. За время
Так как энергия виртуального фотона
Полагая в (1.9.9) радиус действия ядерных сил равным 1,3·10-13 см, получим, что кванты поля ядерных сил должны иметь массу покоя Существует три типа пионов - положительный (π+) пион с зарядом е, отрицательный (π-) с зарядом - е и нейтральный (π0). Все три частицы нестабильны. Заряженные пионы имеют одинаковую массу, равную 273m е (140 МэВ), и время жизни τ = 2,55·10-8 с. Масса нейтрального пиона составляет 264m е (135 МэВ), а время жизни τ = 2,1·10-16 с. Спин любого пиона равен нулю. В результате аналогичных (1.9.4) виртуальных процессов
нуклон оказывается окруженным облаком виртуальных π-мезонов, которые образуют поле ядерных сил. Поглощение этих пионов другими нуклонами приводит к сильному взаимодействию между нуклонами и происходит по одной из следующих схем:
Процесс (1.9.13) находит экспериментальное подтверждение в рассеянии нейтронов на протонах. После прохождения пучка нейтронов через мишень, содержащую ядра Орбитальное движение π --мезонов в процессе (1.9.11) вызывает возникновение у нейтрона отрицательного магнитного момента (см. таб. 1.6.1), так как нейтрон часть времени проводит в виртуальном состоянии Оценим время виртуального процесса как
где
Эту величину часто называют характерным временем ядерного взаимодействия. В рамках обменной теории оказывается маловероятным обмен пионами между одним и двумя другими нуклонами, находящимися в пределе радиуса действия ядерных сил. Отсюда вытекает свойство насыщения ядерных сил со всеми вытекающими последствиями: постоянство удельной энергии связи, рост объема ядра пропорционально числу частиц нуклонов в ядре, независимость потенциала от координаты внутри ядра. Мезонная теория содержит в своей основе глубокое и правильное описание природы ядерных сил, но уравнения этой теории настолько сложны математически, что до настоящего времени не существует надежных способов решения этих уравнений. Это является одной из причин создания большого числа разнообразных моделей ядра в ядерной физике (см. гл.2 §1).
Дата добавления: 2014-01-04; Просмотров: 2391; Нарушение авторских прав?; Мы поможем в написании вашей работы! |