Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные законы радиоактивного распада




Радиоактивный распад – явление принципиально статистическое. Нельзя предсказать, когда именно распадется данное ядро, а можно лишь указать с какой вероятностью оно распадется за тот или иной промежуток времени. Распад отдельного радиоактивного ядра не зависит от присутствия других ядер и может произойти в любой интервал времени. Наблюдения за очень большим числом одинаковых радиоактивных превращений ядер позволяет установить вполне определенные количественные закономерности для характеристики процесса радиоакивного распада.

Естественная статистическая величина, характеризующая радиоактивный распад, – постоянная (или константа) распада λ – определяет вероятность распада ядра в единицу времени и имеет размерность [время]‑1. Экспериментальные и теоретические исследования позволяют заключить, что постоянная распада λ не зависит, по-видимому, от времени, прошедшего с момента образования ядра, что отражено в названии.

Пусть ядро достоверно существует в некоторый момент времени t = 0, условно принимаемый за ноль. У этого ядра к произвольно выбранному моменту времени t может реализоваться одна из двух возможностей:

1) ядро испытало радиоактивный распад и вероятность такого события равна ;

2) ядро не испытало радиоактивного распада и вероятность такого события равна .

Очевидно, что

(3.2.1)

Установим, чему равна вероятность испытать ядру радиоактивный распад за время dt. Прежде, чем ядро испытает распад за интервал времени между , необходимо, чтобы ядро не распалось к моменту времени t. Вероятность dp (t) такого сложного события будет равна

(3.2.2)

где λ dt - вероятность распада ядра за время dt. Используя (3.2.1) уравнение (3.2.2) приведем к виду

. (3.2.3)

Поскольку ядро достоверно существует в момент времени , то имеем очевидное начальное условие . Тогда искомая вероятность составит

(3.2.4)

При помощи (3.2.1) и (3.2.4) найдем для ядра вероятность q (t) не испытать распада к моменту времени t:

(3.2.5)

Соотношения (3.2.4) и (3.2.5) содержат полное описание статистических свойств радиоактивного распада ядер и позволяют определить любые статистические характеристики распада.

Найдем среднее время жизни ядра, используя определение для математического среднего:

(3.2.6)

поскольку – вероятность того, что ядро, прожив время t, распадется за время между .

Пусть в момент времени t = 0 имелось N 0 радиоактивных ядер одной природы. Наиболее вероятное (ожидаемое) число ядер N (t), которые не испытают радиоактивного распада к моменту времени t, должно составить

, (3.2.7)

а соответственно число распавшихся ядер (d – decay – распад)

(3.2.8)

Формула (3.2.7) выражает основной закон радиоактивного распада. Следует еще раз подчеркнуть, что имеют смысл наиболее вероятного количества оставшихся и распавшихся радиоактивных ядер к моменту времени t. Реальные же количества радиоактивных ядер к моменту времени t могут быть как больше, так и меньше. Используемая далее в выражениях величина N, если не оговорено иное, всегда имеет смысл среднего числа ядер.

В ядерной физике и ее приложениях используется еще одна временная характеристика распада – период полураспада Т 1/2, которая определяет время, за которое первоначальное количество ядер N 0 должно уменьшиться в два раза. Установим связь между периодом полураспада Т 1/2 и постоянной распада λ. По определению

(3.2.9)

откуда

(3.2.10)

Сравнивая это выражение с (3.2.6) устанавливаем, что

(3.2.11)

Для характеристики радиоактивных свойств вещества, т.е. совокупности большого числа радиоактивных ядер, служит специальная величина, характеризующая скорость радиоактивных превращений, которая называется активностью. Активность А (не путать с массовым числом А!) – среднее число ядер в образце, испытавших радиоактивный распад за единицу времени. Для радиоактивных ядер одной природы получим, используя (3.2.8):

(3.2.11)

Полученное выражение можно записать в следующем виде (учитывая (3.2.7)):

(3.2.12)

или же в виде

(3.2.13)

где - начальная активность образца.

Единицей измерения активности в СИ служит беккерель (Бк),

1 Бк = 1 распад/с.  

Часто в практических приложениях используется другая единица измерения активности - кюри (Ки):

1 Ки = 3,7·1010 Бк.  

Активность, отнесенная к массе радиоактивного препарата, называется массовой удельной активностью. Для жидких и газообразных веществ иногда используют объемную удельную активность.

Для определения l (а, следовательно, t и Т 1/2) можно использовать формулу (3.2.12), если в некоторый произвольный момент времени измерить активность препарата и число радиоактивных ядер. Этим методом удобно пользоваться, когда период полураспада достаточно велик, и поэтому изменением числа радиоактивных ядер за время измерения активности можно пренебречь. Если период полураспада Т 1/2 не очень велик, то можно непосредственно снять кривую изменения активности через определенные интервалы времени. Затем по полученным значениям строят график зависимости натурального логарифма активности от времени. Постоянную распада l удобно находить, если записать (3.2.13) в виде:

(3.2.14)

Зависимость (3.2.14) представляет собой прямую, а l определяется по тангенсу угла наклона этой прямой (рис. 3.2.1) или непосредственно по уменьшению активности вдвое. В реальных условиях экспериментальные точки имеют неизбежный разброс, определяемый статистической природой радиоактивного распада. Для проведения через такие точки наиболее достоверной прямой обычно используют метод наименьших квадратов, в результате чего среднеквадратичное отклонение точек от найденной прямой будет минимальным.

Весьма распространенными являются случаи распада радиоактивных ядер с образованием не только стабильных, но и радиоактивных дочерних ядер. В последнем случае возникают цепочки распадов. Примером таких цепочек могут служить рассмотренные выше радиоактивные семейства. Баланс числа радиоактивных ядер при этом определяется следующими уравнениями:

(3.2.15)
.............

где индекс 1 относится к первичным материнским ядрам, а индексы 2, 3,... – к дочерним. Распад ядер N 1 описывается обычным законом распада (3.2.7). Баланс ядер каждого дочернего вещества определяется скоростью собственного распада (активностью) и скоростью рождения, равной скорости распада ядер-предшественников. Решение каждого уравнения (3.2.15) зависит только от вида решения предшествующего. В простейшем случае, когда в начальный момент времени дочерних ядер нет, а количество материнских ядер равно N 10, решение каждого k -го уравнения из (3.2.15) имеет вид:

(3.2.16)

Полное число радиоактивных ядер есть сумма всех количеств Nk, существующих в данный момент времени.

Из общего решения (3.2.16) получаем решение для N 2(t):

(3.2.17)

Из (3.2.17) следует, что количество ядер N 2 достигает своей максимальной величины

. (3.2.18)

в момент времени

, (3.2.19)

а затем монотонно убывает. Если l1 << l2 (или (Т 1/2 )1 >> (Т 1/2 )2) и t» (Т 1/2 )2, то из (3.2.17) в пределе t → ∞ получаем

, (3.2.19)

т.е. устанавливается динамическое равновесие между активностью материнского и дочернего препаратов, которое называется вековым равновесием. Вековое равновесие широко используется для определения периодов полураспада долгоживущих материнских нуклидов по известным значениям l2 и N 2/ N 1. Очевидно, что при выполнении соответствующих условий вековое равновесие может наступать для любой пары соседних элементов в цепочке распадов.

Другой предельный случай l1 >> l2 (или (Т 1/2 )1 << (Т 1/2 )2) при t» (Т 1/2 )1 дает зависимость

, (3.2.20)

которая фактически является кривой распада дочернего вещества.

 




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 527; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.023 сек.