КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Бета – распад
Бета-распад (b-распад) является спонтанным процессом преобразования ядра, в результате которого ядро изменяет свой заряд на ΔΖ = ±1, сохраняя при этом неименное число нуклонов А (массовое число). В некоторых случаях образуются свободные b -частицы (электрон β- или позитрон β +) или перестает существовать один из электронов («захват» ядром электрона из электронной оболочки) соответствующего атома. Свойства электрона и позитрона тождественны, за исключением знака электрического заряда. Потоки образующихся b - частиц называются b -излучением. β-Распад – самый распространенный вид радиоактивных превращений ядер в природе. В отличие от α-распада, который наблюдается исключительно у тяжелых ядер, β-распаду подвержены ядра практически во всей области значений массового числа А, начиная от единицы (свободный нейтрон) и заканчивая массовыми числами самых тяжелых ядер. Энергия, выделяющаяся при β-распаде, опять же, в отличие от α-распада, лежит в довольно широком интервале значений от 0,02 МэВ при распаде ядра трития 3Н до 16,4 МэВ при распаде ядра 12N. Периоды полураспада β-активных ядер изменяются в очень широких пределах от 10-2 с до 1018 лет. Стабильные атомные ядра должны иметь минимальную величину полной энергии, которая определяется его массой. Масса ядра с данным числом нуклонов определяется, в свою очередь, его протонно-нейтронным составом, поскольку массы протона и нейтрона не равны между собой. В этой связи у ядер-изобар существует единственно возможная конфигурация чисел протонов и нейтронов, которой отвечает ядро с наименьшей массой (см. рис. 2.2.1), а, следовательно, и полной энергией. Ядру с любой другой конфигурацией нуклонов энергетически выгодно превращение в ядро с оптимальной конфигурацией. Такие самопроизвольные изменения в составе ядер действительно имеют место и обусловлены явлением b-распада – взаимопревращением нуклонов друг в друга. Направление процесса для ядра с данным протонно-нейтронным составом определяется лишь тем, в каком состоянии один из нуклонов ядра – нейтроном или протонном – имеет наибольшую энергию связи, которой соответствует наименьшая масса ядра (см. рис. 2.2.1). Известны три разновидности b-распада. 1. Электронный (β-- распад):
при котором выбрасываются электрон β- и антинейтрино , а дочернее ядро получает заряд на единицу больший, чем материнское, так как в ядре уменьшается число нейтронов на единицу за счет увеличения на единицу числа протонов. Например: 2. Позитронный (b+ - распад)
при котором выбрасываются позитрон β+ и нейтрино ν, а дочернее ядро получает заряд на единицу меньший, чем материнское, так как в ядре увеличивается на единицу число нейтронов из-за уменьшения на единицу числа протонов. Например: 3. E-захват (или К -захват - по обозначению электронной оболочки)
где е- - атомный электрон. В результате Е-захвата один из электронов, как правило, один из двух самой глубокой К -оболочки атома, захватывается ядром. При этом выбрасывается нейтрино ν, а дочернее ядро получает заряд на единицу меньше, чем материнское. Например: Е-захват и b+ - распад часто конкурируют между собой, так как ядра претерпевают одинаковые превращения. Таким образом, при b - распаде любого вида число нуклонов в ядре сохраняется, но происходит самопроизвольное превращение либо нейтрона в протон (β-- распад), либо протона в нейтрон (b + -распад и Е-захват). Именно поэтому Е-захват относится к процессам b-распада. Так как при b - распаде изменяется только один из нуклонов ядра, то этот процесс – внутринуклонный, а не внутриядерный. Подтверждением этому служит b - распад свободного нейтрона, протекающего по следующей схеме:
Поэтому свободный нейтрон частица нестабильная. Современное значение периода полураспада нейтрона составляет 10,25 мин. Превращение (b-распад) свободного протона в нейтрон запрещено законом сохранения энергии, так как его масса на 1,3 МэВ меньше массы нейтрона. Но в составе ядра он может преобразовываться в нейтрон за счет внутренней энергии ядра, что приводит к явлению b + -распада или Е-захвата. Остановимся на интересном вопросе о возникновении свободных β-частиц в процессе β-распада ядер. Не вызывает сомнений, что источником β-частиц является ядро, но большое количество экспериментальных данных свидетельствует о том, что в ядре нет β-частиц. Еще до открытия нейтрона (1932 г.) и создания протонно-нейтронной модели ядра (Иваненко, Гейзенберг.1932 г.) была предложена модель атомного ядра, имеющего в своем составе протоны и электроны. Например, ядро представлялось как 14 протонов и 7 электронов. К тому времени было известно, что протон и электрон имеют полуцелый спин, равный 1/2 и согласно этой модели спин ядрадолжен быть полуцелым числом. Однако экспериментально измеренный спин ядра равнялся единице. Это противоречие получило название «азотная катастрофа». Отсюда следует несправедливость протонно-электронной модели ядра. Об этом же свидетельствует и порядок величины магнитных моментов ядер, которые не превышают нескольких ядерных магнетонов Бора (см. §1.6 п.2). Если бы электроны входили в состав ядра, естественно было бы ожидать, что магнитные моменты ядер по порядку величины должны быть близки атомному магнетону Бора, величина которого ~ в 2000 раз больше ядерного. Наконец, о невозможности существования в ядре связанных электронов свидетельствует квантовомеханическое соотношение между неопределенностями Δ p и Δ r одновременного измерения импульса и координаты электрона в ядре:
Если принять, Δ r = r я ≤ 2∙10-13 см, то для импульса электрона в ядре получим минимальную величину
которой соответствует энергии электрона > 20 МэВ. Такая величина энергии существенно превышает как высоту кулоновского барьера для электронов в самых тяжелых ядрах (В к ≈ 15 МэВ), так и энергию электронов β-распада. Таким образом, по современным представлениям электронов в ядрах нет и они рождаются непосредственно при b-распаде ядра, о чем свидетельствует также рождение особых частиц: нейтрино (ν) и антинейтрино, которые имеют обобщающее название нейтрино. Обнаружить на опыте β- и b+ -распады очень просто, регистрируя обычными методами β-частицы с большой энергией. Зарегистрировать нейтрино, возникающее при Е-захвате, обычными лабораторными методами невозможно. Однако Е-захват сопровождается характеристическим рентгеновским излучением, возникающим вследствие того, что образовавшаяся энергетическая вакансия после захвата электрона ядром, заполняется электронами с вышележащих электронных оболочек атома. Длина волны характеристического рентгеновского излучения определяется величиной Z ядра (закон Мозли), что позволяет идентифицировать заряд материнского ядра. Кроме этого, энергия перехода может быть непосредственно передана одному из электронов внешней оболочки, в результате чего возникает излучение моноэнергетических электронов (т.н. электроны Оже). Именно по таким сопутствующим явлениям был открыт Е-захват (Альварец, 1937 г.). При β-распаде выделяется энергия, равная разности массы первоначальной системы и массы конечной, выраженных в энергетических единицах:
где me и εе – масса и энергия связи атомного электрона, который захватывается ядром. В правых частях (3.5.9) опущены массы покоя нейтрино и антинейтрино, так как по современным представлениям их массы покоя mν не превышает 30 эВ (mν << me). Если к правой части равенств (3.5.9) прибавить и вычесть Z me, то с точностью до энергии связи электронов в атоме энергию соответствующей разновидности β-распада можно выразить через массы атомов:
Положительная величина энергии распада является необходимым энергетическим условием возможности β-распада. Поэтому (3.5.9) и (3.5.10) выражают энергетические условия соответствующих разновидностей β-распада. Использовать для этих целей понятие энергии связи β-частцы в ядре неправомерно, поскольку в ядре нет β-частиц. Выше было указано, что b+ - распад и Е-захват конкурируют между собой. Из (3.5.10) очевидно, что если выполняется условие для β+‑распада, то и подавно выполнится последнее, а Е-захват может происходить даже тогда, когда β+‑распад энергетически невозможен. Все нечетно-нечетные ядра, за исключением четырех легких ядер 2H, 6Li, 10B и 14N, указанных выше, нестабильны к β-распаду и очень часто испытывают все три вида b - распада, хотя и с различной вероятностью. Объясняется это эффектом спаривания одноименных нуклонов, в результате которого нечетно-нечетное ядро «стремится» стать четно-четным всеми возможными способами (рис. 2.2.1,б). Например, ядра в 40 % испытывает β-‑распад, в 40 % - Е‑захват и в 20 % - b +- распад. Как всегда, эти данные следует понимать в статистическом смысле, а каждое конкретное ядро может либо испытать β-‑распад, либо Е‑захват, либо b +- распад. Оценим максимальную долю энергии, которую может получить невозбужденное дочернее ядро, когда энергия нейтрино равна нулю. В этом случае кинетическая энергия β-частица (T β)max и дочернего ядра Т я имеют максимально возможные значения. Пусть материнское ядро покоиться. Тогда из закона сохранения импульса следует, что
Учитывая, что получим
Поэтому с хорошей точностью можно положить = Е β. Энергии β-частиц измеряется по величине их отклонения при движении в постоянном магнитном поле с помощью специальных приборов, называемых магнитными β- спектрометрами. Последний представляет магнитный анализатор импульсов β-частиц и подобен масс-спектрометру. Измерения показали, что в процессе β-распада одинаковых ядер испускаются β-частицы всех энергий от нуля и до энергии (T e)max, называемой верхней границей β- спектра, и приблизительно равной Е β из (3.5.10). Таким образом, в отличие от линейчатых спектров α-частиц (см. рис. 3.4.1), энергетический спектр β-частиц является сплошным. На рис. 3.5.1. представлен энергетический спектр β--частиц, испускаемых при распаде свободного нейтрона (3.5.6), форма которого является весьма типичной. Энергетические спектры легких ядер более симметричны и для них средняя энергия испускаемых β-частиц примерно равна (1/2)·(T e)max. У тяжелых ядер средняя энергия β-частиц обычно близка к 1/3 максимальной и для большинства естественных источников β-излучения заключена в пределах 0,25 ÷ 0,45 МэВ. Интерпретация перечисленных особенностей энергетических спектров β-частиц в свое время вызывала большие затруднения. Действительно, если не делать никаких предположений, то согласно (3.5.10) испускаемые β-частицы должны иметь, как и α-частицы, строго определенную и равную (T β)max энергию, определяемую энергетическим выходом распада. Но в спектре имеются b - частицы с любой меньшей энергией и неизбежно возникает вопрос - куда исчезает остальная энергия в каждом случае b-распада, когда Т β < (T e)max? Эти соображения послужили основанием для гипотезы (Паули, 1931 г.) о возникновении в β-распадных процессах электрически нейтральной частицы с массой покоя, близкой к нулю, и со спином, равным 1/2. Эта частица, впоследствии названная нейтрино, и должна уносить большую часть (~ (2/3)·(T e)max) энергии распада. Помимо закона сохранения энергии, существует еще один важный аргумент, с необходимостью приводящий к гипотезе нейтрино – закон сохранения спина. Рассмотрим распад (3.5.6) свободного нейтрона. Нейтрон, имеющий спин 1/2, распадаясь только на протон (спин 1/2) и электрон (спин 1/2) давал бы суммарный спин продуктов, равный 0 или 1, что противоречит закону сохранения импульса, для выполнения которого нужно предположить рождение частицы с полуцелым спином. Учет орбитальных моментов протона и электрона ничего не меняет, так как они всегда целые числа. Таким образом, при β-распаде, в отличие от α-распада, из ядра вылетают не одна, а две частицы. В силу статистического характера явления радиоактивности в каждом акте β-распада распределение энергии распада между β-частицей и нейтрино может быть любым, т.е. кинетическая энергия электрона может иметь любое значение от нуля и до (T β)max. Для очень большого числа распадов получается уже не случайное, а вполне закономерное распределение β-частиц по энергиям, называемое β- спектром. Нейтрино практически не взаимодействуют с веществом и его длина свободного пробега (расстояние до первого взаимодействия) в твердом веществе равна примерно 1016 км, что делает чрезвычайно сложным их регистрацию. Поэтому измерять энергию нейтрино и наблюдать их распределение по энергии практически невозможно и фактически единственно доступным для регистрации остается только β-спектр. Долгое время сведения, подтверждающие существование нейтрино, носили косвенный характер и были впервые получены в 1942 г (Аллен) путем измерения энергии отдачи дочерних ядер при Е-захвате. Прямое наблюдение нейтрино удалось осуществить только в 1953 г. (Рейнес и Коуэн) после создания мощных ядерных реакторов, работа которых сопровождается выделением больших потоков нейтрино. Образование дочернего ядра в результате β-распада в основном энергетическом состоянии является скорее исключением, чем правилом. Обычно β-распад довольно свободно идет как на основной, так и на сравнительно сильно (по сравнению с α-распадом) возбужденные уровни и может наблюдаться несколько возбужденных уровней дочернего ядра. Возбужденные дочерние ядра переходят а основные состояние, испуская γ-кванты. Поэтому β-распад сопровождается почти всегда γ-излучением, которое представляет основную опасность при обращении с радиоактивными веществами. Возбуждение дочернего ядра до энергии происходит за счет энергии распада Е β и в этом случае максимальная энергия β-спектра
Если при β-распаде возможно образование дочернего ядра в нескольких возбужденных состояниях, то полный β-спектр представляет собой наложение нескольких β-спектров со своими граничными энергиями и может иметь сложную форму. Каждая составляющая спектра характеризуется своим выходом, т.е. долей распадов, приводящих к ее образованию. Так же как и a - распад (рис. 3.4.1), b-распад удобно представлять с помощью диаграммы. На рис. 3.5.2 приведена диаграмма β+ - распада ядра 14О, в результате которого дочернее ядро 14N рождается в возбужденном состоянии. При переходе в основное состояние дочернее ядро испускает g-квант с энергией 2,31 МэВ. Вероятность b - распада определяется т.н. правилами отбора по четности и спину. Они заключаются в следующем. 1) Если четности материнского Р м и дочернего Р д ядер совпадают, т.е., если Р м· Р д = +1, то такие b-переходы имеют наибольшую вероятность (разрешены на языке квантовой механики). 2) Полный момент импульса, уносимый обеими частицами при b - распаде, равен
где s и l – спин и орбитальный момент соответствующих частиц. Испускание b-частицы и нейтрино с l > 0 крайне маловероятно (запрещено на языке квантовой механики), и разрешенными являются переходы с l = 0. Таким образом, разрешенными являются b-переходы, для которых Р м· Р д = +1 и l = 0. Для разрешенных переходов изменение спина ядра будет определяться только ориентацией спинов, вылетающих частиц. При этом имеются две возможности. а) β-Частица и нейтрино испускаются с противоположно направленными спинами, так что полный момент, уносимый обеими частицами, равен нулю (ориентация спина нуклона, испытывающего β-распад, сохраняется) и спин ядра не изменяется, т.е. Δ I = 0. Такие переходы называются фермиевскими, а соответствующие правила отбора
- называются правилами отбора Ферми. б) β-Частица и нейтрино испускаются с одинаково направленными спинами, так что полный момент, уносимый обеими частицами равен единице (ориентация спина нуклона изменяется на обратную). Возможные изменения спина ядра составят Δ I = 0, ±1. Если исключить 0 – 0 переходы, в которых спин ядра равен нулю, как в начальном, так и в конечном состоянии, то получим правила отбора Гамова-Теллера
Еще раз отметим, что для 0 - 0 переходов гамов-теллеровские переходы строго запрещены, т.е. не могут быть выполнены ни при каких условиях. Поэтому вероятность непосредственно b - распада и образования дочернего ядра в том или ином энергетическом состоянии очень сильно зависитот четности и разностиспинов исходного и конечного состояний ядер. Это положение отчетливо видно на диаграмме (рис. 3.5.2) распада ядра 14О, где указано, что вероятность оказаться дочернему ядру в основном состоянии с характеристикой 1+ имеет ничтожную вероятность. Энергия возбуждения дочерних ядер определяется системой энергетических уровней ядер и лежит обычно в интервале 0,1 ÷ 3 МэВ. В этих случаях переход возбужденного дочернего ядра в основные состояния происходит обычным порядком. Однако в редких случаях энергия возбуждения дочерних ядер может достигать 8 ÷ 11 МэВ, превышая энергию связи (отделения) нуклона:
В этом случае возбужденное дочернее ядро освобождается от избыточной энергии, практически мгновенно испуская нуклон – протон или нейтрон, в зависимости от того для какого из нуклонов выполняется условие (3.5.17). Эти нуклоны получили название з апаздывающих, поскольку они появляются в результате возникновения сильно возбужденных состояний дочернего ядра только после β-распада материнского ядра-предшественника. Рассмотрим подробнее процесс испускания запаздывающих нейтронов осколками деления (см. §5.2), которые используются для управления цепной реакцией деления (см. §5.3). Время появления запаздывающих нейтронов деления, в отличие от мгновенных (см. §5.2), определяется периодами полураспада ядер предшественников. На рис. 3.5.3 изображена схема образования запаздывающих нейтронов при распаде ядра 87Br, образующегося при делении 235U. Примерно в двух случаях из ста β--распадов ядра 87Br дочернее ядро 87Кr возникает в сильно возбужденном состоянии с энергией возбуждения = 5,8 МэВ. Энергия связи последнего нейтрона в ядре 87Кr составляет εn = 5,53 МэВ, которая меньше энергии возбуждения и потому испускается нейтрон с кинетической энергией 0,27 МэВ и образуется стабильное ядро 86Кr. Можно указать две причины такой малой величины энергии связи последнего нейтрона: ядра осколков деления пересыщены нейтронами (лежат ниже дорожки стабильности, см. рис. 1.1.2); и, кроме этого, ядро 87Кr имеет один лишний нейтрон сверх замкнутой оболочки из 50 нейтронов в магическом ядре . Такие же причины вызывают появление запаздывающих нейтронов при β--распаде тяжелого осколка деления 137I, которое может превращаться в сильно возбужденное ядро 137Хе*. Испустив нейтрон, ядро 137Хе* превращается в стабильное ядро с магическим числом нейтронов, равным 82. Таким образом, можно указать два обстоятельства, благоприятствующие выполнению условия (3.5.17) и, следовательно, появлению запаздывающих нейтронов при β--распаде: - запрет образования дочернего ядра в основном энергетическом состоянии и малая величина энергии εn связи нейтрона. Если ядра сильно перегружены нейтронами и находятся ниже дорожки стабильности (рис. 1.1.2), то возможно образование последовательных цепочек β--распадов. Подобная ситуация наблюдается в ядерном реакторе, когда продукты (осколки) деления с разной вероятностью образует большое число (сотни) различных цепочек ‑ распадов. На рис. 3.5.4 показаны двеизчисла наиболее вероятных цепочек, на которых отмечено испускание запаздывающих нейтронов ядрами 139Хе и 94Sr, физическая причина появления которых рассмотрена выше. В цепочке β--распадов 95Kr наблюдается еще одно распространенное явление, называемое ядерной изомерией. Ядро 95Zr при распаде образует изомерную пару: возникновение с разной вероятностью ядер 95mNb в метастабильном состоянии и ядер 95Nb в основном энергетическом состояние. Подробнее явление ядерной изомерии рассмотрено в §3.6. Теория b-распада была создана Ферми в 1934 г. по аналогии с квантовой электродинамикой, в которой испускание и поглощение фотонов рассматривается как результат взаимодействия заряда с создаваемым им самим электромагнитным полем (см. §1.9 п.5). При этом фотоны не содержатся в готовом виде в зарядах, а рождаются непосредственно в момент испускания. В теории Ферми процесс b-распада рассматривается как результат взаимодействия нуклона с новым видом поля (электроно-нейтринным полем), в результате которого нуклон, находясь в одном из двух возможных нуклонных состояниях – протонном или нейтронном - испускает b-частицу и нейтрино и переходит в другое нуклонное состояние. Нуклоны являются источниками b-частиц и нейтрино, которые рождаются непосредственно в момент преобразования нуклонов в электроно-нейтринном поле. Такого рода поля в настоящее время называются электрослабыми. Все известные науке взаимодействия связаны всего с четырьмя типами полей: сильными (ядерными), электромагнитными, электрослабыми и гравитационными. Например, все химические реакции относятся к классу электромагнитных взаимодействий, так как осуществляются электрическими силами электронных оболочек атомов. В частности, любые проявления жизни на Земле также имеют электромагнитный характер. Сильное (ядерное) взаимодействие удерживает нуклоны в ядре и проявляется в различных ядерных реакциях. Слабое взаимодействие ответственно за b-распад и распады мезонов. Гравитационное поле проявляется в макроскопических и космических масштабах. Если расположить все эти взаимодействия по их относительной интенсивности, то получим следующую картину: сильное 1 электромагнитное ~ 10-2 электрослабое ~ 10-14 гравитационное ~ 10-40. Не следует думать, что этими цифрами определяется роль соответствующих взаимодействий (полей) в природе. Они равно фундаментальны, то есть без любогоиз них невозможно существование Вселенной. Теория Ферми позволила рассчитать b-спектры и влияние на форму b-спектров кулоновского поля ядра и электронной оболочки атома. При малой энергии вылетающей заряженной частицы форма любого β-спектра искажается кулоновским взаимодействием между ядром и вылетающей из него β-частицей ядра (рис. 3.5.5). Кулоновское поле ядра оказывает на b- - частицы тормозящее действие. В результате спектр в «мягкой» (низкоэнергетической) области энергий оказывается обогащенными частицами. β--Спектры с граничной энергией меньше 1 МэВ у средних и тяжелых ядер вообще не имеют максимума, а монотонно спадают. В спектрах b+ - распада мягкая область спектра, наоборот, оказывается обедненной. Поле электронной оболочки атома оказывает на спектр незначительное влияние. При изучении b - распадных явлений было сделано одно из фундаментальных открытий ядерной физики - несохранение четности в слабых взаимодействиях. Гипотезу о несохранение четности в слабых взаимодействиях выдвинули в 1956 г. Ли и Янг, которые показали, что в отличие от теории Ферми, опирающуюся на закон сохранения четности, можно построить теорию b - распада без учета этого закона, которая не противоречила всем известным к тому времени экспериментальным фактам. Они же предложили эксперимент по обнаружению несохранения четности при b - распаде, который был поставлен в 1957 г. Ву. Принципиальные черты этого эксперимента следующие (рис. 3.5.7). b‑Активный образец 60Со, ядра которого имеют большой спин и магнитный момент (I = 5, m = 3,78 mБ), помещался в магнитное поле кругового тока и охлаждался до очень низких (~ 10-2 К) температур. Это было необходимо для ориентирования магнитных моментов и, следовательно, спинов ядер 60Со в определенном направлении (поляризации) и уменьшения влияния тепловых колебаний ядер. У поляризованного таким образом образца 60Со регистрировались b - частицы, летящие под углом q и p-q по отношению к направлению поляризующего магнитного поля, то есть по отношению к направлению спина ядра. При выполнении закона сохранения четности для квадрата модуля волновой функции выполняется условие
или в сферических координатах
т.е. инверсия системы координат не может изменить вероятность обнаружения частицы. От азимутального угла j в опыте ничего не зависит. Следовательно, если четность сохраняется, то вероятность зарегистрировать b-частицу под углом q («вперед») и p - q («назад») одинакова. Опыт же показал существенное различие счета частиц под этими углами. «Вперед» (в направлении векторанапряженности магнитного поля) двигалось существенно (~ на 40 %) больше b-частиц, чем «назад». Таким образом, закон сохранения четности, который казался столь же фундаментальным и нерушимым, как и остальные законы сохранения, в случае слабых взаимодействий оказался нарушенным. Это привело к пересмотру и уточнению теория слабых взаимодействий.
Дата добавления: 2014-01-04; Просмотров: 2056; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |