Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Источники нейтронов




Для получения свободных нейтронов используют различные ядерные реакции. Широко применяется в портативных нейтронных источниках реакция (см. §4.6). Источники нейтронов такого типа имеют сплошной энергетический спектр в диапазоне ~ 1 – 10 МэВ из-за ионизационного торможения первоначально моноэнергетических α-частиц.

Монохроматические нейтроны можно получать с помощью реакции (4.6.18) (Т n = 2,5 МэВ) и (4.6.19) (Т n = 14.1 МэВ). Реакция (4.6.19) широко используется для получения монохроматических нейтронов (Т n = 14,1 МэВ) в специальных сравнительно низковольтных (0,1 - 0,3 МВ) ускорителях дейтонов, которые получили название генераторов нейтронов.

Для получения моноэнергетических нейтронов используются эндоэнергетические реакции. Например:

p + 7Li → 7Be + n, Q = -1,65 МэВ. (4.9.10)

При энергии протонов возле порога (Т р = 1,88 МэВ) образуются нейтроны с энергией 30 кэВ, движущиеся в узком конусе. При увеличении энергии протонов угол раствора конуса растет. Изменяя энергию протонов от порога до 5 МэВ и угол отбора нейтронов с помощью этой реакции можно получать моноэнергетические нейтроны с энергией от 30 кэВ до 3,3 МэВ.

Реакция

p + 3H → 3He + n, Q = -0,764 МэВ (4.9.11)

почти вытеснила реакцию (4.9.10) на литии. Пороговое значение энергии протонов Т р = 1,019 МэВ, при которой образуются нейтроны с энергией 64 кэВ. Достоинством этой реакции является отсутствие возбужденных состояний ядра 3Не, что позволяет получать моноэнергетические нейтроны с энергией от 64 до 4 МэВ.

Для получения нейтронов используют фотоядерные реакции, например (энергии нейтронов указаны вблизи порога):

Е n = 200 кэВ, , E n = 110 кэВ. (4.9.12)

При изменении энергии γ-квантов с помощью реакций (4.9.12) можно получать почти монохроматические нейтроны с энергиями ~ 0,1 ÷ 1 МэВ.

Свободные нейтроны можно получать при делении тяжелых ядер. Нейтроны деления образуются либо в актах спонтанного распада ядер, либо в результате реакций деления (вынужденное деление).

В настоящее время получили большое распространение источники нейтронов, использующие спонтанное деление , дающих большой удельный поток нейтронов ~ 2,5×106 нейтронов в секунду на 1 мкг . Энергетический спектр нейтронов источника - сплошной, с максимумом при энергии нейтронов около 1 МэВ, по внешнему виду мало отличается от спектра деления ядер урана и плутония.

Большие потоки нейтронов возникают при работе ядерных реакторов. Через поверхность активной зоны реактора проходит до 1017 – 1018 нейтронов в секунду. В центральной части активной зоны реакторов на быстрых нейтронах плотность потока нейтронов может достигать ~ 1016 (см2 с)-1.

Мощным источником нейтронов является ядерный взрыв. В цепной реакции деления при взрыве образуется 2×1023 нейтронов на 1 кт тротилового эквивалента (количества тротила, эквивалентное по энергии взрыва). При термоядерном взрыве образуется примерно в 10 раз больше нейтронов в расчете на 1 кт тротилового эквивалента. Ядерный взрыв, образующий 1024 нейтронов, на расстоянии 100 м создает интегральный по времени поток нейтронов (флюэнс) ~ 1010 см -2.

Для получения нейтронов используются электронные ускорители (см. §4.8) в качестве генераторов тормозного излучения с последующим образованием нейтронов в (g,n) реакциях (§4.8).

При облучении тяжелымизаряженными частицами нейтроны можно получать из любой мишени при достаточной (> 10 MэB) энергии частиц р, a, d.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 337; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.