Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Резонансные процессы




Появление резонансов (см. §4.2 и §4.6) в реакциях является характерной особенностью реакций, идущих с образованием составного ядра. Физической причиной появления резонансов при взаимодействии нейтронов с ядрами служит наличие дискретной системы уровней у связанной системы нейтрон – ядро-мишень, которой является составное ядро. Сечение образования составного ядра должно определяться длиной волны де Бройля (4.9.13) для нейтрона, которая представляет некоторый эффективный радиус взаимодействия движущейся частицы с точечными объектами при возникновении связанного состояния. Длина волны (4.9.13) нейтрона обратно пропорциональна его скорости и при малых значениях кинетической энергии нейтрона может быть очень большой. Вместе с тем образование составного ядра возможно только при определенном значении кинетической энергии нейтрона (см. §4.2) в пределах естественной ширины уровня. За пределами этого узкого интервала энергии составное ядро не образуется и длина волны нейтрона уже не играет роли, а сечение потенциального рассеяния при этом определяется только геометрическими размерами ядра и равно 4π R 2 (1 - 10 барн), где R – радиус ядра. В итоге зависимость сечения от энергии нейтрона приобретает резонансный характер (рис. 4.9.3).

Рассмотрим характеристики отдельного резонанса (рис. 4.9.3). Полная ширина резонанса Г определяется на половине высоты резонанса и связана с шириной возбужденного уровня и средним временем жизни уровня соотношением неопределенностей. Нетрудно оценитьть, что ширина резонанса Г ≈ 7۰10-2 эВ, если τ = 10‑14 с. Если же то имеем стационарное состояние, а для стационарного уровня Г → 0. Составное ядро может распадаться по различным каналам: с испусканием нейтрона (n); g-кванта (γ); может испытать деление (f); распасться с испусканием протона или a‑частицы и т.д. по любому из возможных каналов (4.1.2), каждый из которых имеет свою парциальную ширину. Вероятности этих процессов различны, но полная вероятность λ распада составного ядра в единицу времени (постоянная распада) равна

, (4.9.30)

а постоянная распада связана со средним временем жизни соотношением

. (4.9.31)

Следовательно

, (4.9.32)

то есть полная ширина уровня складываетсяиз парциальных ширин, которые пропорциональны относительным вероятностям распада по соответствующим каналам. Вероятность же распада по данному каналу j будет

. (4.9.33)

Величины Г, Г n, Г g, Гf, s0, Т 0 являются параметрами конкретного резонанса. Параметры резонанса определяются экспериментально.

Резонансы называются уединенными (неперекрывающимися), если расстояние между соседними уровнями D >> Г (см. рис.1.7.1). Уединенные резонансы описываются формулой Брейта-Вигнера, которая определяет сечение образование промежуточного возбужденного ядра на первой стадии процесса (4.2.1)

. (4.9.34)

Здесь g - статистический (спиновый) фактор, смысл которого раскрыт в §1.6 п.1:

, (4.9.35)

где J - спин возбужденного уровня промежуточного ядра, I - спин ядра-мишени, S = 1/2 - спин нейтрона; Г n – ширина уровня по отношению к упругому рассеянию нейтрона в данном резонансе. В (4.9.35) орбитальный момент нейтрона принят равным нулю. Нейтроны с энергией меньше 10 кэВ, а именно в этом энергетическом диапазоне расположены резонансы, взаимодействуют с ядрами только с орбитальными моментами l = 0. Выражение (Т nТ 0)2 в (4.9.34) определяет поведение резонанса и называется резонансным членом.

Сечение для резонансного рассеяния нейтронов может быть найдено следующим образом, если использовать (4.9.33) и (4.9.34):

, (4.9.36)

Аналогичным образом определяется сечение реакции (n,γ):

, (4.9.37)

и реакции деления:

. (4.9.38)

В области энергий, когда энергия нейтрона близка к тепловой, Г γ меняется слабо, так как определяется величиной энергии возбуждения промежуточного ядра (4.5.32)

, (4.9.39)

а , и можно считать, что Г γ = const.

Пусть имеется неделящееся вещество. Тогда Г = Г n + Г g. Из теории преодоления нейтронoм ядерного барьера следует, что Гn ~ v n и в тепловой области энергий Г n << Г g. Таким образом, в тепловой области ГГ γ. Если Т n << Т 0, то резонансный член в (4.9.34) становится постоянным числом. Тогда, используя (4.9.13), (4.9.37) и принятые выше допущения, получим

, (4.9.40)

или

. (4.9.41)

Следует отметить, что закон 1/ v n (пунктир на рис. 4.9.3), первоначально найденный экспериментально для энергетической зависимости сечения реакции (n,γ) в области Т n << Т 0, наблюдается и для ряда других реакций, таких как (n,α), (n, f). В результате очень многие вещества захватывают тепловые нейтроны с очень большим сечением, которые могут существенно превосходить сечение резонансного рассеяния.

С ростом кинетической энергии нейтронов сечение реакции (n,γ) монотонно падает, но при приближении к первому резонансному значению Т 0 начинает возрастать и при Т n = Т 0 становится равным

. (4.9.42)

Отсюда следует, что резонансы, расположенные в области тепловых энергий (большие ), например, у кадмия (рис. 4.9.1), могут иметь очень большие сечения захвата нейтронов.

Процесс упругого резонансного рассеяния (4.9.36) обычно маловероятен для тепловых нейтронов по сравнению с радиационным захватом, но с ростом энергии нейтронов его роль повышается, так как . Вместе с тем медленные нейтроны испытывают и потенциальное рассеяние без захода нейтрона в ядро.

С ростом энергии нейтронов уровни энергии составного ядра начинают перекрываться (у тяжелых ядер начиная с ~ 10 кэВ и выше). В результате составное ядро образуется с одинаковой вероятностью при любой энергии нейтронов, резонансная картина пропадает, и сечение монотонно убывает с ростом энергии нейтронов. В этой энергетической области обычно становится возможным процесс неупругого рассеяния нейтронов.

На параметры резонансов в тепловой области влияет температура окружающей среды. В формуле Брейта-Вигнера энергия нейтрона есть энергия относительного движения нейтрона и ядра. Ядра-мишени всегда участвуют в тепловом хаотическом движении и поэтому при одной и той же энергии нейтрона в ЛСК энергия относительного движения несколько больше при встречном движении и несколько меньше при одном направлении движения нейтрона и ядра. В результате не все, а только часть нейтронов с энергией Т 0 взаимодействуют с ядрами, уменьшая сечение σ0. Другая же часть нейтронов имеет большую или меньшую относительную энергию и, взаимодействуя с ядрами, увеличивает сечение на крыльях резонанса. В итоге резонансный пик, сохраняя свою площадь, становится ниже и шире, что приходиться учитывать при расчете ядерных реакторов. По аналогии с оптикой изменение формы резонансного пика вследствие теплового движения ядер называется эффектом Доплера. Особенно заметно влияние эффекта Доплера на форму резонансных пиков для значений Г, имеющих близкие величины с тепловой энергией ядер среды.

ГЛАВА 5. ДЕЛЕНИЕ ЯДЕР




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 447; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.