КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Максимальная скорость потока, то есть скорость ядра, определяется по формуле
, а объёмный расход вычисляется по формуле Букингема , соответственно Если вместе с выражением для средней скорости воспользоваться формулой Дарси-Вейсбаха, то получим для безразмерного коэффициента сопротивления выражение: откуда видно, что l невозможно определить, не зная значение Dр. В общем случае значение для вязкопластичной жидкости может определяться по формуле: , где t0d/hvср = Sen - безразмерный параметр, называемый критерием Сен-Венана-Ильюшина, характеризующий эффект пластичности жидкости. Вид функции j аналитически определить затруднительно, но для практических расчётов можно использовать формулу, дающую незначительную погрешность в области малых скоростей сдвига: , ОБРАТИТЕ ВНИМАНИЕ, что где безразмерная величина Re¢¢ представляет собой ОТНОШЕНИЕ СИЛ ИНЕРЦИИ К СИЛАМ ПЛАСТИЧНОСТИ. Для определения значения l по значениям чисел Рейнольдса и Сен-Венана - Ильюшина существуют НОМОГРАММЫ. Для упрощенных расчётов (для целей бурения) величину l можно определять по формуле l = 64 Re *: где Re* - обобщённый параметр Рейнольдса, который в этом случае не является критерием для оценки вида течения (для этих целей в данном случае необходимо знать параметр Сен-Венана): 15. Формулы для определения коэффициента сопротивления при различных условиях течения. ü турбулентный режим течения (круглая цилиндрическая труба), Re = 2500 - 7000: (формула Блазиуса) ; ü глинистые и цементные растворы Re = 2500 - 40 000 (формула Мительмана Б.И.): ; ü глинистые и цементные растворы Re = 2500 - 50 000 (формула Шищенко Р.И., Ибатулова К.А.): , при значениях Re > 50 000 коэффициент сопротивления может быть принят постоянным и равным 0.02. ü ламинарное течение в трубах аномально вязких систем (псевдопластичные жидкости) ф. У. Уилкинсона:
где Re¢ - обобщённый критерий Рейнольдса для псевдопластичных жидкостей; k и n - показатели консистенции и степени для псевдопластичных жидкостей. ü турбулентный режим течения вязкопластичных жидкостей в трубах (аппроксимационная формула Доджа и Метцнера): , где а и - безразмерные коэффициенты, определяемые в зависимости от (см. Басарыгин Ю.М., Будников В.Ф., Булатов А.И. Теория и практика предупреждений осложнений и ремонта скважин при их строительстве и эксплуатации. стр. 106). ü течение вязкой несжимаемой жидкости в цилиндрическом коаксиальном канале. (Там же). 16. ТЕОРИЯ ПОДОБИЯ. Для решения ряда гидромеханических задач не удаётся найти аналитического решения, тогда прибегают к экспериментальным методам исследования, обобщая частные случаи на большой класс схожих задач. Для осуществления такого перехода пользуются различными критериями подобия. ü геометрическое подобие. Два цилиндрических круглых трубопровода будут геометрически подобны, если все размеры одного могут быть получены умножением всех размеров имеющегося тела на некоторый постоянный коэффициент. ü кинематическое подобие. Если два потока жидкости имеют геометрически сходственные ограничивающие поверхности и скорости в сходственных точках будут пропорциональны, то такие потоки кинематически подобны. ü динамические подобие. Если для геометрически подобных потоков жидкостей на сходственные элементы действуют пропорциональные силы, то говорят о динамическом подобии. Наиболее общий подход при использовании теории подобия - анализ дифференциальных уравнений движения, позволяющий определить КРИТЕРИИ ПОДОБИЯ ОБЪЕКТОВ. Рассмотрим одномерное уравнение Навье-Стокса для подобных объектов 1 и 2: то для выполнения условий подобия явлений необходимо обеспечить следующее: x1 = mLx2; vx1= mvvx2; h= m hh2; p1 = mpp2; X1 = mQX2; r1 = mr r2, где mL,mv, m h, mp, mQ, mr -соответственно масштабы подобия длин, скоростей, вязкостей, давлений, сил тяжести, плотности. Подставляя последние выражения в уравнение Навье-Стокса для объекта 1 и принимая во внимание, что mt =mL /m v получаем:
Для того, чтобы явления для объектов 1 и 2 были одинаковыми, необходимо равенство всех коэффициентов для всех членов (тогда уравнение для объекта 1 переходит в уравнение для объекта 2), т.е. Из полученного условия можно составить три независимых гидромеханических критерия подобия: Согласно первому критерию, который называется коэффициентом Эйлера или коэффициентом давления, имеем согласно второму - критерию Рейнольдса , и третьему - критерию Фруда Следовательно, для полного гидромеханического подобия ламинарного течения вязкой несжимаемой жидкости необходимо равенство Re, Fr, Eu. В отдельных задачах возможно равенство некоторых критериев. Так, для определения потерь давления в горизонтальной круглой цилиндрической трубе ранее была показана необходимость равенства лишь критерия Рейнольдса, что соответствует одинаковому значению коэффициента сопротивления l. ОБРАТИТЕ ВНИМАНИЕ, что критерий Re является отношением сил инерции к силам трения; критерий Fr - сил инерции к силам тяжести, Eu - перепада давления к силам инерции. Из приведённых критериев можно получить ещё три критерия: - число Стокса, число Лагранжа и гидравлический уклон соответственно. Все остальные сочетания из соотношений сил инерции, тяжести, трения и перепада давления будут обраными величинами приведённых шести критериев. Для вязкопластичных жидкостей помимо приведённых критериев подобия имеются условия динамического подобия, обусловленные наличием сил пластичности. Ø Отношение сил пластичности к силам вязкости характеризует критерий Сен-Венана-Ильюшина ; Ø Сил тяжести к силам пластичности - критерий Стокса ; Ø Перепада давления к силам пластичности УРАВНЕНИЯ ДВИЖЕНИЯ И РАВНОВЕСИЯ
Основным динамическим уравнением движения материальной точки является 2-й закон Ньютона m`a = `F, а широко используемым следствием этого закона являются следующие общие теоремы движения системы материальных точек: Ø производная по времени от количества движения равна сумме всех действующих на систему внешних сил (1.45) и называется уравнением количества движения, или уравнением импульсов: Ø производная по времени от кинетического момента системы относительно какого-либо неподвижного центра О равна сумме моментов всех внешних сил, действующих на систему, относительно того же центра, т.е. (1.46) называется уравнением моментов количества движения; Ø дифференциал кинетической энергии системы равен сумме элементарных работ всех действующих на систему внешних и внутренних сил, т.е.(1.47) называется уравнением механической энергии или теоремой живых сил. Для любого мысленно выделяемого индивидуального объёма сплошной среды, ограниченного поверхеностью, уравнения (1.45-1.47) действительны, если динамические величины определить следующим образом: (соответственно количество движения, момент количества движения и кинетическая энергия сплошной среды в объёме V); (соответственно сумма внешних объёмных и поверхностных сил и их моментов относительно некоторого неподвижного центра О, действующих на среду в объёме V). Силы и их моменты непрерывно определены и сосредоточены. Сумма элементарных работ внешних и внутренних объёмных и поверхностных сил . В этом случае уравнения (1.45) и (1.46) являются основными постулируемыми динамическими соотношениями МСС. Они служат исходными для описания любых движений СС, в том числе разрывных движения и ударных процессов. Уравнение (1.47) одно из наиболее важных следствий уравнений (1.45) и (1.46) при непрерывных движениях в пространстве и времени. При непрерывных движениях интегральная теорема движения (1.45) эквивалентна следующим 3 дифференциальным уравнениям: в декартовой системе координат: в цилиндрической системе координат при осевой симметрии где проекции ускорения вычисляют по формулам (1.9). Эти уравнения, связывающие компоненты vi вектора скорости и тензора напряжений являются основной системой дифференциальных уравнений движения для любой СС, представляющих собой уравнение баланса количества движения (импульса) для бесконечно малого объёма среды. Если движения частиц происходят без ускорения (= 0) или они пренебрежимо малы, то уравнения (1.48) называются дифференциальными уравнениями равновесия. При непрерывном движении сплошной среды теорема моментов количества движения (1.46) в дифференциальной форме сводится к выводу о том, что тензор напряжений симметричен, т.е. s = s. Если тензор напряжений симметричен, то уравнения моментов количества движения удовлетворяются тождественно. Интегральная теорема живых сил (1.47) эквивалентна следующему дифференциальному уравнению: dK = dW = dA(e) (1.49) где: соответственно изменение кинетической и потенциальной энергии бесконечно малого объёма сплошной среды, элементарная работа внешних объёмных и поверхностных сил, действующих на бесконечно малый элемент объёма среды. Уравнение (1.49) является следствием уравнения движения (1.48) и представляет собой УРАВНЕНИЕ БАЛАНСА МЕХАНИЧЕСКОЙ ЭНЕРГИИ. В общем случае оно не является законом сохранения энергии, но его можно так трактовать тогда, когда механическая энергия тела не переходит в тепловую или другие виды энергии. Общий закон сохранения энергии в этом случае распадается на два: закон сохранения механической энергии и закон сохранения энергии другого вида. ДВИЖЕНИЕ ЖИДКОСТЕЙ И ГАЗОВ В ПЛАСТАХ Заканчивание скважин стр. 64 –69
При рассмотрении движения жидкостей и газов в пластах, представляющих собой проницаемую среду, необходимо знать характер изменения давления в точках пласта и на его границах, а особенно на стенках скважины, а также расход пластовых флюидов через какие-либо ограничивающие поверхности. При бурении это представляет интерес с позиций оценки процессов газоводонефтепроявлений, поглощений, проникновения бурового раствора и продуктивные пласты, ухудшения проницаемости призабойной зоны и др.
Дата добавления: 2014-01-04; Просмотров: 610; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |