КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Электрические контакты в ЭА
В ЭА используются временные, постоянные и полупостоянные электрические контакты. К временным следует отнести разъемное и винтовое соединение, к постоянным — сварку, полупостоянным — паяное соединение, соединение накруткой и опрессовкой. Разъемные соединения обеспечивают быструю установку и удаление элементов конструкции и используются для повышения ремонтопригодности аппаратуры. Винтовое соединение является основным видом соединения проводов к электрическим машинам и приборам и позволяет коммутировать провода независимо друг от друга. Медные проводники малых сечений изгибают в кольцо под винт, а чтобы не расходились жилы многожильных проводов, пропаиваются или опрессовываются кольцевыми наконечниками. Материалы проводников и винта различны. Предотвращение возможного ослабления контактного давления при циклических температурных воздействиях и вибрациях возможно введением под винт пружинной шайбы или шайбы-звездочки. Соединение пайкой осуществляется расплавленным припоем с температурой плавления ниже температуры плавления соединяемых проводников. Сварочное соединение обладает высокой механической прочностью, способностью выдерживать циклические температурные воздействия, обеспечивает высокую плотность монтажа и рекомендуется для применения при разработке микроминиатюрной аппаратуры. При выполнении соединений сварочными токами можно повредить МС, диоды, транзисторы. Соединение накруткой получают без разогрева материалов путем накручивания под натягом вокруг жесткого вывода нескольких витков одножильного провода. В сечении вывод представляет квадратную или прямоугольную форму с острыми углами. Материал вывода должен быть достаточно прочным, чтобы противостоять скручивающим усилиям, обладать хорошим сопротивлением на сминание накручиваемым проводом и низким омическим сопротивлением. Подобными свойствами обладают фосфористая и бериллиевая бронзы. В качестве материала проводника используется относительно мягкий и пластичный материал, сохраняющий форму накрутки. Соединение обеспечивает высокую надежность при жестких механических и климатических воздействиях. Основными причинами отказа соединения является ухудшение переходного сопротивления из-за коррозии соединения и появления усталостных явлений в накрученном проводе. При опрессовке два провода со снятой с концевых частей изоляцией вводят в соединительную металлическую трубчатую гильзу, которая механически обжимается, в результате чего между проводами через гильзу будет иметь место электрический контакт. Надежность соединения во многом зависит от соотношения размеров гильзы и диаметра провода, усилия обжатия и герметизации места соединения. Размеры и материал гильзы для каждого случая соединения тщательно подбираются экспериментально. Сравнение способов выполнения электрических контактов проводится на основе анализа основных свойств и параметров контакта. Использование пайки и накрутки позволяет автоматизировать производство электромонтажных работ. Пайка и сварка обеспечивает высокую плотность монтажа. Сравнительная оценка способов контактирования, выполненная относительным методом, когда наилучшему соединению по определенному свойству присваивается единица, а наихудшему — четыре, приведена в табл. 5.10. За исключением быстроты выполнения соединений по всем прочим свойствам разъемный контакт и контакт «под винт» проигрывают постоянным и полупостоянным способам контактирования. Таблица 5.10. Оценка способов соединения электрических контактов
В ЭА используют соединения многих разнородных материалов: серебро, палладий, золото — в контактах соединителей, медь и ее сплавы — для проводов, клемм, гнезд и штырей соединителей; оловянно-свинцовые припои в соединениях; цинк, никель, кадмий — для защитных покрытий крепежа и т. д. В местах соединений разнородных материалов возникают термоэлектрические потенциалы, зависящие как от материалов, так и температуры в соединении. Разница температур в различных частях конструкции может привести к погрешностям из-за наличия термоэлектрических потенциалов электрических соединений в высокочувствительных низкоуровневых схемах с высокими коэффициентами усиления. Основными принципами уменьшения погрешностей термоэлектрических потенциалов являются минимизация числа соединений, использование материалов с низкой термоэлектрической способностью. Наличие окислов на проводах, соединяемых накруткой, в значительной степени увеличивает термоэлектрическую способность соединений (до 0,9 мкВ/°С). Поэтому с проводов перед накруткой должны тщательно удаляться окислы. Выбор электрических соединителей. Электрический соединитель должен выдерживать более жесткие внешние климатические и механические воздействия, чем аппаратура, в которую соединитель устанавливается. Запас по внешним воздействиям обеспечит его надежную работу в процессе эксплуатации. Чем больше контактов соединителя, тем меньше параметры надежности, приходящиеся на один контакт. Поэтому при отсутствии жестких ограничений на габариты и массу ЭА можно рекомендовать вместо одного устанавливать несколько соединителей с суммарным числом контактов, равным числу контактов внешних цепей изделия. Цилиндрические соединители по сравнению с прямоугольными обеспечивают более надежную заделку жгута, имеют большую надежность и стабильность параметров. Однако монтаж прямоугольных соединителей за счет линейного расположения выводов более удобен, габариты по сравнению с цилиндрическими соединителями с равным числом контактов меньше. При конструировании аналоговой аппаратуры необходимо помнить, что в цепях с низкими уровнями сигналов существенное влияние на надежную работу ЭА оказывают помехи термоэлектрических потенциалов контактных пар. Для конструктивных модулей всех уровней ЭА конструктор разрабатывает определенный способ коммутации. При этом, как правило, модули снабжаются соединителями, которые по назначению можно классифицировать как соединители разных уровней коммутации. Коммутация на плате МС и ЭРЭ выполняется, как правило, паяными соединениями. Недостаток этого способа состоит в том, что для многовыводных компонентов затрудняется демонтаж, возникает необходимость в использовании специальной оснастки, например паяльников для групповой пайки. Улучшение ремонтопригодности и снижение эксплуатационных затрат возможно применением в конструкции соединителей первого уровня коммутации. Соединители МС распаиваются на печатной плате, затем в них устанавливают МС. Электрический контакт выводов соединителя с выводами МС обеспечивается за счет холодного контактирования металлов. Соединители второго уровня коммутации обеспечивают электрическое соединение ТЭЗ между собой на шасси или объединительной печатной панели. Соединители третьего уровня осуществляют коммутацию приборов, блоков, рам и стоек. В зависимости от назначения различают соединители кабельные, при-борно-кабельные и приборные. Кабельный соединитель служит для коммутации кабелей приборов. Вилочная и розеточная части соединителя не закрепляются на приборах, а фиксируются на кабелях. В приборно-кабельных соединителях один из элементов (обычно вилка) закрепляется на приборе, вторым же элементом соединителя (розеткой) заканчивается кабель и фактически происходит коммутация кабеля с прибором. В приборных соединителях осуществляется коммутация частей приборов между собой. При этом вилка (ипи розетка) закрепляется на модуле, а ответная часть соединителя — на корпусе прибора. Фиксируемые на приборах соединители снабжаются фланцами или специальными элементами закрепления. Соединение вилки с розеткой бывает врубным, резьбовым и байонет-ным. Врубное соединение обеспечивается простым вставлением вилки в розетку, иногда с фиксацией сочлененного состояния замком. Резьбовое соединение кабельных и приборно-кабельных соединителей выполняется резьбовой накидной гайкой, после завинчивания которой на требуемое число витков происходит коммутация и фиксация пар штырь-гнездо. Байонет-ное соединение обеспечивается пазом и выступом, вводимым в конструкцию вилки и розетки. При попадании выступа в паз и легком нажатии осуществляется скольжение выступа в пазе и западание (фиксация) в углубление. Резьбовые соединители обеспечивают высокую надежность электрических соединений в условиях жестких механических воздействий. Накидная гайка соединителя предохраняется от самоотвинчивания проволокой малого диаметра. Врубное соединение позволяет быстро сочленять-расчленять соединитель, но такие соединители имеют низкую надежность в условиях воздействия ударов и вибраций. Байонетное соединение занимает промежуточное положение между врубным и резьбовым. Корпус соединителя служит для закрепления на нем изолятора с контактами, защиты соединителя от внешних воздействий, в том числе и для защиты контактов соединителя от касания телом или одеждой, крепления соединителя к несущей конструкции модуля или кабеля к соединителю, а также фиксации сочлененного состояния. Корпус соединителя бывает прямой и угловой. Выбор формы корпуса определяется ориентацией частей прибора друг относительно друга. Правильный выбор корпуса может упростить эксплуатацию и уменьшить габариты прибора. Соединитель выбирают исходя из назначения, предполагаемого способа монтажа (при этом фактически оговариваются требования к конструкции хвостовика контакта соединителя), необходимого числа коммутируемых цепей, электрических и электромеханических параметров, внешних климатических и механических воздействий, надежности, конструктивных особенностей соединителя. К электрическим параметрам соединителей относятся максимальная рабочая частота, контактное сопротивление, рабочие токи и напряжения, сопротивление и электрическая прочность изоляции; к электромеханическим — усилие сочленения соединителя. Для удобства при эксплуатации усилие сочленения должно быть минимальным. Однако при воздействии Рис. 5.23. Неоднородная линия передачи и потоки электромагнитной энергии в линии ударов и вибраций возникает опасность изменения контактного сопротивления, появление виброшумов и шорохов на контактах, нарушение контакта. Для аппаратуры низкого и среднего быстродействия из электрических параметров наиболее важными являются максимальные коммутируемые токи и напряжения. Однако при работе на высоких частотах возникает проблема согласования волновых сопротивлений коммутируемых цепей и контактных пар соединителей. Несогласованность приводит к искажению передаваемых сигналов, увеличению времени переходных процессов в цепях передачи сигналов. Представленный на рис. 5.23 разъемный контакт с волновым сопротивлениемсоединяет в единую цепь две цепи линии передачи с волновым сопротивлением Данную ЛП следует рассматривать как неоднородную. Электромагнитная волна, распространяясь по линии и встречая неоднородности, частично отражается и возвращается к началу линии. Отражения приводят не только к ослаблению передаваемого сигнала. Обратный поток электромагнитной энергии затрудняет согласование линии передачи с нагрузкой, а попутный поток искажает форму передаваемого сигнала. Интенсивность отказов электрического соединителя рассчитывается по формуле где— коэффициенты, учитывающие соответственно влияние объекта установки и число задействованных контактных пар соединителя;— интенсивность отказов контактной пары; п3 — число задействованных. Рис. 5.24. Интенсивность отказов контактной пары соединителей: А ----- 40...+250 °С; В ---- 40...+200 °С; С ---- 55...125 "С; D--- 20...+100 °С Рис. 5.25. Перегрев контактной пары в зависимости от тока и диаметра штыря контактных пар соединителя;— интенсивность отказов с учетом числа nср выполненных сочленений-расчленений соединителя. Соединители в зависимости от рабочего температурного диапазона классифицируют по группам — А, В, С или D. По графику, приведенному на рис. 5.24, оценивается интенсивность отказов контактной пары соединителя в зависимости от температуры внутри изделия и с учетом нагрева контактной пары коммутируемым током (рис. 5.25). Коэффициентами к1 и к2 корректируют в сторону увеличения в зависимости от объекта установки (табл. 5.11) и числа задействованных контактных пар соединителя где п — число контактных пар соединителя. Таблица 5.11. Коэффициенты влияния объекта установки на надежность электрических соединителей
Величина 1/ч, вычисляется из выражения где — число сочленений-расчленений соединителя за 1000 ч эксплуатации. Пример. Рассчитать интенсивность отказов соединителя на 10 контактных пар (все контактные пары задействованы). Рабочий температурный диапазон соединителя В, диаметр штыря контакта 0,5 мм, ток на контакт 5 А. Соединитель устанавливается в наземную стационарную аппаратуру с температурой окружающей среды +25 °С. Предполагаемое число сочленений-расчленений соединителя 200. Решение: • изделие отнесем к лабораторному оборудованию; • в худшем случае(см. табл. 5.11); • из графика, представленного на рис. 5.28, при токе на контакт 5 А перегрев штыря контактной пары диаметром 0,5 мм будет 18 °С, а температура контактной пары — 43 °С; • из графика, изображенного на рис. 5.24, для соединителя группы В при температуре контактной пары в 43 °С 1/ч; •интенсивность отказов соединителя1/ч. В заключение следует отметить, что электрические соединители являются электромеханическими устройствами и чаще всего самым слабым звеном в ЭА. Причинами ненадежности в работе надежных соединителей является их неправильная установка, некачественный монтаж, плохое обслуживание, пыль и грязь. Важнейшее требование к соединителю — прочность и адекватность конструкции изделия, на которое соединитель устанавливается. При установке соединителя на панель или корпус изделия последние должны обладать достаточной жесткостью, чтобы предотвратить передачу механических воздействий на соединитель и жгут. Контрольные вопросы 1. Перечислите параметры электрических соединений и проанализируйте их влияние на конструкцию ЭА. 2. От каких параметров зависит длина электрически короткой и длинной ЛП? 3. В чем количественно выражается перекрестная помеха и помеха отражения? 4. Для ЛП без потерь с параметрами Ln = 0,5 мкГн/м и Сп = 30 пФ/м определить: • волновое сопротивление; • напряжение на входе и выходе линии, если мощность в нагрузке составляет 10 Вт (линия передачи согласована по входу и по выходу). 5. Линия передачи с волновым сопротивлением 100 Ом нагружена на входе на 50, а на выходе на 200 Ом. Время задержки сигнала в линии 100 не. Входное напряжение задано ступенькой напряжения амплитудой 9 В. Показать характер изменения напряжения на входе и выходе линии. В чем особенности конструкций световодов и волоконно-оптических кабелей?
6. ОСНОВЫ ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ В ПРОИЗВОДСТВЕ ЭЛЕКТРОННОЙ АППАРАТУРЫ
Дата добавления: 2014-01-04; Просмотров: 714; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |