КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Числовые характеристики двумерных случайных величин
Некоторые числовые характеристики одномерных случайных величин: начальные и центральные моменты, мода, медиана, квантиль, коэффициенты асимметрии и эксцесса. Числовые характеристики двумерных случайных величин: начальные и центральные моменты. Корреляционный момент и коэффициент корреляции. Коррелированность и зависимость случайных величин. Лекция 9. Двумерные случайные величины. Случайные векторы (системы нескольких случайных величин). Закон распределения веро-ятностей дискретной двумерной случайной величины. Функция распределения и плот-ность распределения двумерной случайной величины, их свойства. Вероятность попада-ния случайной точки в произвольную область. Отыскание плотностей вероятности со-ставляющих двумерной случайной величины. Равномерное распределение на плоскости. Лекция 8. Наряду с одномерными случайными величинами, возможные значения которых определяют-ся одним числом, теория вероятностей рассматривает и многомерные случайные величины. Каждое возможное значение такой величины представляет собой упорядоченный набор нескольких чисел. Геометрической иллюстрацией этого понятия служат точки п -мерного пространства, каждая координата которых является случайной величиной (дискретной или непрерывной), или п -мерные векторы. Поэтому многомерные случайные величины называют еще случайными векторами.
1. Дискретные двумерные случайные величины.
Закон распределения дискретной двумерной случайной величины (Х, Y) имеет вид таблицы с двойным входом, задающей перечень возможных значений каждой компоненты и вероятности p (xi, yj), с которыми величина принимает значение (xi, yj):
При этом сумма вероятностей, стоящих во всех клетках таблицы, равна 1. Зная закон распределения двумерной случайной величины, можно найти законы распреде-ления ее составляющих. Действительно, событие Х = х 1 представляется собой сумму несовместных событий (X = x 1, Y = y 1), (X = x 1, Y = y 2),…, (X = x 1, Y = ym), поэтому р (Х = х 1) = p (x 1, y 1) + p (x 1, y 2) +…+ p (x 1, ym) (в правой части находится сумма вероятностей, стоящих в столбце, соответствующем Х = х 1). Так же можно найти вероятности остальных возможных значений Х. Для определения вероятностей возможных значений Y нужно сложить вероятности, стоящие в строке таблицы, соответствующей Y = yj. Пример 1. Дан закон распределения двумерной случайной величины:
Найти законы распределения составляющих. Решение. Складывая стоящие в таблице вероятности «по столбцам», получим ряд распре-деления для Х:
Складывая те же вероятности «по строкам», найдем ряд распределения для Y:
Определение 9.1. Начальным моментом порядка k случайной величины Х называется матема-тическое ожидание величины Xk: ν k = M (Xk). (9.1) В частности, ν1 = М (Х), ν2 = М (Х 2). Следовательно, дисперсия D (X) = ν2 – ν1². Определение 9.2. Центральным моментом порядка k случайной величины Х называется мате-матическое ожидание величины (Х – М (Х)) k: μ k = M ((Х – М (Х)) k). (9.2) В частности, μ1 = M (Х – М (Х)) = 0, μ2 = M ((Х – М (Х))2) = D (X). Можно получить соотношения, связывающие начальные и центральные моменты: Мода и медиана. Такая характеристика случайной величины, как математическое ожидание, называется иногда характеристикой положения, так как она дает представление о положении случайной величии-ны на числовой оси. Другими характеристиками положения являются мода и медиана. Определение 9.3. Модой М дискретной случайной величины называется ее наиболее вероятное значение, модой М непрерывной случайной величины – значение, в котором плотность вероятности максимальна. Пример 1. Если ряд распределения дискретной случайной величины Х имеет вид:
то М = 2. Пример 2. Для непрерывной случайной величины, заданной плотностью распределения , модой является абсцисса точки максимума: М = 0. Замечание 1. Если кривая распределения имеет больше одного максимума, распределение называется полимодальным, если эта кривая не имеет максимума, но имеет минимум – анти-модальным. Замечание 2. В общем случае мода и математическое ожидание не совпадают. Но, если распре-деление является симметричным и модальным (то есть кривая распределения симметрична от-носительно прямой х = М) и имеет математическое ожидание, оно совпадает с модой. Определение 9.4. Медианой Ме непрерывной случайной величины называют такое ее значение, для которого p (X < Me) = p (X > Me). (9.3) Графически прямая х = Ме делит площадь фигуры, ограниченной кривой распределения, на две равные части. Замечание. Для симметричного модального распределения медиана совпадает с математичес-ким ожиданием и модой. Определение 9.5. Для случайной величины Х с функцией распределения F (X) квантилью порядка р (0 < p < 1) называется число Кр такое, что F (Kp) ≤ p, F (Kp + 0) ≥ p. В частности, если F (X) строго монотонна, Кр: F (Kp) = p. Такие характеристики, как начальные и центральные моменты, можно ввести и для системы двух случайных величин. Определение 9.8. Начальным моментом порядка k, s двумерной случайной величины (Х, Y) называется математическое ожидание произведения Xk на Ys: α k,s = M (XkYs). (9.6) Для дискретных случайных величин для непрерывных случайных величин Определение 9.9. Центральным моментом порядка k, s двумерной случайной величины (Х, Y) называется математическое ожидание произведения (X – M (X)) k на (Y – M (Y)) s: μ k,s = M ((X – M (X)) k (Y – M (Y)) s). (9.7) Для дискретных случайных величин для непрерывных случайных величин При этом М (Х) = α1,0, M (Y) = α0,1, D (X) = μ2,0, D (Y) = μ0,2.
Дата добавления: 2014-01-04; Просмотров: 1361; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |