Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Космические лучи, галактическая корона и магнитное поле Галактики




 

Диффузная среда, которую мы рассмотрели в предыдущих параграфах, состоит главным образом из газа, образующего плоскую подсистему в Галактике. Возникает вопрос, какова природа межзвездной среды на больших расстояниях от плоскости Галактики? О том, что там может иметься газ, пусть даже очень разреженный, можно судить хотя бы на том основании, что сбрасывающие с себя газовые оболочки планетарные туманности встречаются на значительных расстояниях от галактической плоскости.

Наиболее важные результаты о природе межзвездной среды в этой области Галактики получаются на основании изучения космических лучей, представляющих собой весьма энергичные элементарные частицы и атомные ядра, движущиеся с огромными скоростями, близкими к скорости света. Энергии этих частиц поистине колоссальны (сотни миллиардов электрон-вольт!). Проходя через земную атмосферу, космические лучи сталкиваются с молекулами воздуха и порождают много новых энергичных частиц (вторичные космические лучи).

По химическому составу первичные космические лучи отличаются от вещества большинства звезд относительно большим содержанием некоторых элементов особенно лития, бериллия и бора, которые практически отсутствуют в космосе, так как легко “выгорают” в звездах из-за ядерных реакций. Содержание в космических лучах наиболее тяжелых элементов, таких как Са, Fe, Ni, превышает среднее содержание их в космосе в несколько десятков раз.

Аномально высокое содержание лития, бериллия и бора в космических лучах объясняется расщеплением более тяжелых ядер из-за столкновений с ядрами атомов межзвездного газа (в основном с протонами и альфа-частицами). Эти столкновения увеличивают относительное количество легких ядер и уменьшают содержание тяжелых элементов (особенно железа). Для того чтобы в потоке космических лучей образовалось наблюдаемое количество Li, Be и В, необходимо, чтобы они прошли слой вещества, содержащий не менее 3 г/см 2. Поскольку космические лучи обладают изотропией, в отличие от распределения горячих звезд и межзвездной среды, для оценки величины пройденного ими пути необходимо принять плотность межзвездной среды, усредненную по всему сферическому объему с диаметром, равным поперечнику диска Галактики. Такое среднее значение плотности составляет около 10-26 г/см 3 или 0,01 атома водорода в 1 см 3.

Цилиндр сечением в 1 см 2, заполненный газом такой плотности и содержащий 3 г вещества, имеет высоту

что в тысячи раз превышает размеры Галактики.

Как мы увидим в следующей главе, некоторые источники космических лучей могут находиться далеко за пределами Галактики. Однако мощность известных из них недостаточна для объяснения наблюдаемого количества космических лучей.

Следовательно, необходимо принять, что космические лучи проделывают огромный путь внутри нашей Галактики, постоянно меняя свое направление. Причиной, способной изменить направление траектории заряженной частицы, движущейся со скоростью, близкой к скорости света, является магнитное поло, которое, как нам уже известно, беспрепятственно позволяет двигаться заряженным частицам вдоль силовых линий, не пропуская их, однако, в поперечном направлении.

Имеется еще одно свидетельство существования магнитного поля в Галактике, а именно поляризация света удаленных звезд. Точные измерения показали, что излучение многих звезд, наблюдаемых в больших областях на небе, одинаково поляризовано, причем плоскость поляризации плавно изменяет свое направление в пределах всей области. Характер и величина (~10%) поляризации говорят о том, что межзвездное поглощение, которое испытывает свет далеких звезд, вызывается удлиненными частицами (пылинками), одинаково ориентированными в больших областях Галактики. Естественно предположить, что подобной ориентирующей силой является магнитное поле.

Изотропия космических лучей, т.е. тот факт, что нельзя “видеть” испускающие их источники, свидетельствует о сильной “запутанности” силовых линий межзвездного магнитного поля, вследствие чего движение космических лучей в них сходно с явлением диффузии газов.

Среднее время, за которое одна частица проходит свой сложный путь от источника до Земли, получится, если найденное выше значение пути (1027 см) поделить на скорость, близкую к световой, т.е. 3×1010 см/сек. Тогда получим, что это время порядка 3×1016 сек, т.е. составляет миллиарды лет. Зная время, в течение которого существуют наблюдаемые космические лучи, легко рассчитать необходимую мощностьихисточников.

Принимая концентрацию космических лучей 10-11 см -3, а среднюю их энергию 1010 эв» 10-2 эрг, получим, что плотность энергии космических лучей равна 10-11 см -3×10-2 эрг = 10-13 эрг/см 3. Объем сферы с поперечником, равным диаметру Галактики (30 кпс = 1023 см), составляет V = 5×1068 см 3. Поэтому полная энергия космических лучей в Галактике порядка 10-13 эрг/см 3× 5×1068 см 3 = 5×1055 эрг. За время 3×1016 сек такое количество энергии возникает, если мощность источников равна

В Галактике имеется лишь один источник сравнимой мощности — это сверхновые звезды. По-видимому, взрывы сверхновых приводят к образованию быстрых электронов и космических лучей, которые по мере рассасывания оболочки сверхновой вливаются в общий поток галактических космических лучей.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 608; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.