Распределительная таблица фактически является матрицей, с которой можно проводить преобразования и получать новые опорные решения используя метод однократного замещения Жордана-Гаусса, сущность которого сводится к назначению другой базисной переменной, вместо одной из свободных.
При таком замещении свободная переменная объявляется базисной и подлежит определению, а некоторая базисная (безразлично какая) становится свободной. В математике доказано, что в каждом опорном решении задачи линейного программирования, размещённом в распределительной таблице, можно построить цикл, (и притом только один), однократного замещения одной свободной переменной на одну базисную переменную. При этом продуцируется новый опорный план с новым значением целевой функции. Матрица «единичных стоимостей», обеспечивает общий расчёт затрат по любому полученному решению. То есть она обеспечивает оценку решения записанного в таблице.
При целенаправленном преобразовании начальной таблицы-матрицы можно достигать как минимизации затрат. Рассмотрим методику названного алгоритма.
Циклом называют набор клеток, в котором две и только две клетки расположены в одной строке или в одном столбце, причём, последняя клетка столбца образует первую клетку строки, и так далее, вплоть до замыкания цепочки в цикле (см. табл. 9.1.1).
Таблица 9.1.1.
Схема циклического преобразования
Z0= 1130
С каждым опорным решением можно провести циклическое преобразование, которое всегда начинается в одной из свободных клеток, затем проходит только через занятые клетки, и заканчивается на исходной клетке.
Число вариантов таких преобразований равно числу свободных клеток. Число занятых клеток всегда должно быть равно рангу системы.
Приводим пример проведения циклического преобразования со свободной клеткой 4-1 (координаты клеток определяются номерами индексов переменных)
Выполним сначала расчёт целевой функции исходному решению Z0:
Далее, в порядке знакомства с методом однократного замещения, выберем любую свободную клетку, например, клетку 4-1, построим «от неё» схему цикла
однократного замещения, изобразив его в таблице найденного ранее исходного («нулевого») варианта опорного решения.
В свободной клетке (4-4) размещаем + λ1 ( первая нечётная порядковая клетка). Протягиваем далее от неё стрелку до занятой клетки (4-4), где будет размещаться - λ2... далее поступаем аналогичным образом, чередуя положительные и отрицательные значения λm, размещённые в угловых клетках, согласно последовательности построения цикла. Заметим, что индексы фиксируют только порядковое расположение λ, и к его численному значению никакого отношения не имеет. Численное значение λ определяется после построения цикла. Правила построение циклов всегда обеспечивают равное количество отрицательных и положительных по знаку значений λm..
Использование алгоритма оптимизации Для выполнения очередного циклического преобразования достаточно выбрать клетку, которая, в построенном начальном цикле, имеет наименьшее, (по абсолютной величине), значение переменной, и находится в углу цикла со знаком «минус». В нашем примере это клетка 1-1 в табл. 9.2.1.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление