КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лгрфприбл
Экспоненциальное приближение ПРЕДСКАЗ Вычисляет или предсказывает будущее значение по существующим значениям. Предсказываемое значение — это y-значение, соответствующее заданному x-значению. Известные значения — это x- и y-значения, а новое значение предсказывается с использованием линейной регрессии. Эту функцию можно использовать для предсказания будущих продаж, потребностей в оборудовании или тенденций потребления. Синтаксис ПРЕДСКАЗ(x; известные_значения_y; известные_значения_x)
В состав функций, позволяющих осуществить построение и анализ по методу экспоненциального приближения, относятся: ЛГРФПРИБЛ РОСТ В регрессионном анализе вычисляется экспоненциальная кривая, аппроксимирующая данные и возвращается массив значений, описывающий эту кривую. Поскольку данная функция возвращает массив значений, она должна вводиться как формула массива.
Синтаксис ЛГРФПРИБЛ(известные_значения_y; известные_значения_x; константа; статистика) Известные_значения_y — множество значений y, которые уже известны в соотношении y = b*mx. Если массив известные_значения_y имеет один столбец, то каждый столбец массива известные_значения_x интерпретируется как отдельная переменная. Если массив известные_значения_y имеет одну строку, то каждая строка массива известные_значения_x интерпретируется как отдельная переменная. Массив известные_значения_x может включать одно или более множеств переменных. Если используется только одна переменная, то известные_значения_y и известные_значения_x могут быть диапазонами любой формы, если только они имеют одинаковые размерности. Если используется более одной переменной, то аргумент известные_значения_y должен быть диапазоном ячеек высотой в одну строку или шириной в один столбец (так называемым вектором). Если известные_значения_x опущены, то предполагается, что это массив {1;2;3;...} такого же размера, как и известные_значения_y. Если константа имеет значение ИСТИНА или опущено, то b вычисляется обычным образом. Если константа имеет значение ЛОЖЬ, то b полагается равным 1 и значения m подбираются так, чтобы удовлетворить соотношению y = mx. Если статистика имеет значение ИСТИНА, то функция ЛГРФПРИБЛ возвращает дополнительную статистику по регрессии, то есть возвращает массив {mn; mn-1;...; m1; b: Sen; Sen-1;...; Se1; Seb: R2; Sey: F; df: SSreg; SSresid}. Если статистика имеет значение ЛОЖЬ или опущено, то функция ЛГРФПРИБЛ возвращает только коэффициенты m и константу b. Важно! Методы, которые используются для проверки уравнений, полученных с помощью функции ЛГРФПРИБЛ, такие же, как и для функции ЛИНЕЙН. Однако дополнительная статистика, которую возвращает функция ЛГРФПРИБЛ, основана на следующей линейной модели: ln(y) = x1*ln(m1) +... + xn*ln(mn) + ln(b) Это следует помнить при оценке дополнительной статистики, особенно значений Sei и Seb, которые следует сравнивать с ln(mi) и ln(b), а не с mi и b.
Дата добавления: 2014-01-05; Просмотров: 274; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |