КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Проверка гипотезы о нормальном распределении генеральной совокупности
Пусть эмпирическое распределение задано в виде последовательности равноотстоящих вариант и соответствующих им частот:
Требуется, используя критерий Пирсона, проверить гипотезу о том, что генеральная совокупность Х распределена нормально. Правило 1. Для того, чтобы при уровне значимости проверить гипотезу о нормальном распределении генеральной совокупности, надо: 1. Вычислить непосредственно (при малом числе наблюдений) или упрощенным методом (при большом числе наблюдений), например методом произведений или сумм, выборочную среднюю и выборочное среднее квадратическое отклонение . 2. Вычислить теоретические частоты где n – объем выборки (сумма всех частот), h – шаг (разность между двумя соседними вариантами), , . 3. Сравнить эмпирические и теоретические частоты с помощью критерия Пирсона. Для этого: а) составляют расчетную таблицу (см. ниже), по которой находят наблюдаемое значение критерия ; б) по таблице критических точек распределения , по заданному уровню значимости и числу степеней свободы (s – число групп выборки) находят критическую точку правосторонней критической области. Если - гипотезу отвергают. Другими словами, эмпирические и теоретические частоты различаются значимо. Замечание 1. Малочисленные частоты следует объединить. В этом случае и соответствующие им теоретические частоты также надо сложить. Если производилось объединение частот, то при определении числа степеней свободы по формуле следует в качестве s принять число групп выборки, оставшихся после объединения частот. Расчетная таблица
Дата добавления: 2014-01-05; Просмотров: 570; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |