КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Относительный покой жидкости
Относительным покоем жидкости называется такое ее состояние, при котором каждая ее частица сохраняет свое положение относительно твердой стенки движущегося резервуара, в котором находится жидкость (см. рис. 2.21). Рис. 2.21. Относительное равновесие жидкости во вращающемся сосуде При относительном покое рассматриваются две задачи: определяется форма поверхности уровня или равного давления и выясняется характер распределения давления. В данном случае необходимо учитывать силы инерции, дополняющих систему массовых сил, действующих в покоящейся жидкости. Рассмотрим случай, когда сосуд с жидкостью вращается вокруг своей оси с постоянной скоростью. Для определения формы свободной поверхности и закона распределения давления выберем вблизи свободной поверхности частицу жидкости массой dm. На эту частицу действует массовая сила dF, направленная по нормали к поверхности. Разложим эту силу на две составляющие: горизонтальную и вертикальную . Разделив действующие силы на dm, получим дифференциальное уравнение поверхности уровня или . Проинтегрировав, получаем
Вывод: При вращении резервуара с постоянной скоростью вокруг вертикальной оси поверхностями равного давления будет семейство параболоидов вращения. Для точки М, находящейся на свободной поверхности жидкости . Закон распределения давления найдем из дифференциального уравнения гидростатики, которое в данном случае примет вид . После интегрирования с учетом граничных условий (), получаем: . Если представить, что , то получим уравнение
Вывод: Распределение давления подчиняется линейному закону для любой фиксированной цилиндрической поверхности.
Дата добавления: 2014-01-05; Просмотров: 285; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |