Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Системне програмне забезпечення

Окрім ядра, важливими складниками роботи ОС є також застосування режиму користувача, які виконують системні функції. До такого системного програмного забезпечення належать:

· системні програми (утиліти), наприклад: командний інтерпретатор, програми резервного копіювання та відновлення даних, засоби діагностики й адміністрування;

· системні бібліотеки, у яких реалізовані функції, що використовуються у застосуваннях користувача.

Системне програмне забезпечення може розроблятися й постачатися окремо від ОС. Наприклад, може бути кілька реалізацій командного інтерпретатора, засобів резервного копіювання тощо. Системні програми і бібліотеки взаємодіють з ядром у такий самий спосіб, як і прикладні програми.

2.2. Реалізація архітектури операційних систем

У цьому розділі розглянуто кілька підходів до реалізації архітектури операційних систем. У реальних ОС звичайно використовують деяку комбінацію цих підходів.

2.2.1. Монолітні системи

ОС, у яких усі базові функції сконцентровані в ядрі, називають монолітними системами. У разі реалізації монолітного ядра ОС стає продуктивнішою (процесор не перемикається між режимами під час взаємодії між її компонентами), але менш надійною (весь її код виконується у привілейованому режимі, і помилка в кожному з компонентів є критичною).

Монолітність ядра не означає, що всі його компоненти мають постійно перебувати у пам’яті. Сучасні ОС дають можливість динамічно розміщувати в адресному просторі ядра фрагменти коду (модулі ядра). Реалізація модулів ядра дає можливість також досягти його розширюваності (для додання нової функціональності досить розробити і завантажити у пам’ять відповідний модуль).

2.2.2. Багаторівневі системи

Компоненти багаторівневих ОС утворюють ієрархію рівнів (шарів, layers), кожен з яких спирається на функції попереднього рівня. Найнижчий рівень безпосередньо взаємодіє з апаратним забезпеченням, на найвищому рівні реалізуються системні виклики.

У традиційних багаторівневих ОС передача керування з верхнього рівня на нижній реалізується як системний виклик. Верхній рівень повинен мати права на виконання цього виклику, перевірка цих прав виконується за підтримки апаратного забезпечення. Прикладом такої системи є ОС Multics, розроблена в 60-ті роки. Практичне застосування цього підходу сьогодні обмежене через низьку продуктивність.

Рівні можуть виділятися й у монолітному ядрі; у такому разі вони підтримуються програмно і спричиняють спрощення реалізації системи. У ядрі визначають рівні, перелічені нижче.

· Засоби абстрагування від устаткування, які взаємодіють із апаратним забезпеченням безпосередньо, звільняючи від реалізації такої взаємодії інші компоненти системи.

· Базові засоби ядра, які відповідають за найфундамеитальніші, найпростіші дії ядра, такі як запис блоку даних на диск. За допомогою цих засобів виконуються вказівки верхніх рівнів, пов’язані з керуванням ресурсами.

· Засоби керування ресурсами (або менеджери ресурсів), що реалізують основні функції ОС (керування процесами, пам’яттю, введенням-виведенням тощо. На цьому рівні приймаються найважливіші рішення з керування ресурсами, які виконуються з використанням базових засобів ядра.

· Інтерфейс системних викликів, який служить для реалізації зв’язку із системним і прикладним програмним забезпеченням.

Розмежування базових засобів ядра і менеджерів ресурсів відповідає відокремленню механізмів від політики в архітектурі системи. Базові засоби ядра визначають механізми функціонування системи, менеджери ресурсів реалізують політику.

2.2.3. Системи з мікроядром

Один із напрямів розвитку сучасних ОС полягає в тому, що у привілейованому режимі реалізована невелика частка функцій ядра, які є мікроядром (microkernel). Інші функції ОС виконуються процесами режиму користувача (серверними процесами, серверами). Сервери можуть відповідати за підтримку файлової системи за роботу із процесами, пам’яттю тощо.

Мікроядро здійснює зв’язок між компонентами системи і виконує базовий розподіл ресурсів. Щоб виконати системний виклик, процес (клієнтський процес, клієнт) звертається до мікроядра. Мікроядро посилає серверу запит, сервер виконує роботу і пересилає відповідь назад, а мікроядро переправляє його клієнтові (рис. 2.1). Клієнтами можуть бути не лише процеси користувача, а й інші модулі ОС.

Перевагами мікроядрового підходу є:

· невеликі розміри мікроядра, що спрощує його розробку й налагодження;

· висока надійність системи, внаслідок того що сервери працюй у режимі користувача й у них немає прямого доступу до апаратного забезпечення;

· більша гнучкість і розширюваність системи (непотрібні компоненти не займають місця в пам’яті, розширення функціональності системи зводиться до додавання в неї нового сервера);

· можливість адаптації до умов мережі (спосіб обміну даними між клієнтом і сервером не залежить від того, зв’язані вони мережею чи перебувають на одному комп’ютері).

Рис. 2.1. Виконання системного виклику в архітектурі з мікроядром

Головним недоліком мікроядрового підходу є зниження продуктивності. Замість двох перемикань режиму процесора у разі системного виклику відбувається чотири (два – під час обміну між клієнтом і мікроядром, два – між сервером та мікроядром).

Зазначений недолік є, швидше, теоретичним, на практиці продуктивність і надійність мікроядра залежать насамперед від якості його реалізації. Так, в ОС QNX мікроядро займає кілька кілобайтів пам’яті й забезпечує мінімальний набір функцій, при цьому система за продуктивністю відповідає ОС реального часу.

2.2.4. Концепція віртуальних машин

У системах віртуальних машин програмним шляхом створюють копії апаратного забезпечення (відбувається його емуляція). Ці копії (віртуальні машини) працюють паралельно, на кожній із них функціонує програмне забезпечення, з яким взаємодіють прикладні програми і користувачі.

Уперше концепція віртуальних машин була реалізована в 70-ті роки в операційній системі VM фірми IBM. У СРСР варіант цієї системи (VM/370) був широко розповсюджений у 80-ті роки і мав назву Система віртуальних машин ЄС ЕОМ (СВМ ЄС). Розглянемо архітектуру цієї ОС [8,44], що показана на рис. 2.2.

Ядро системи, яке називалося монітором віртуальних машин (VM Monitor, МВМ), виконувалося на фізичній машині, безпосередньо взаємодіючи з її апаратним забезпеченням. Монітор реалізовував набір віртуальних машин (ВМ). Кожна ВМ була точною копією апаратного забезпечення, на ній могла бути запущена будь-яка ОС, розроблена для цієї архітектури. Найчастіше на ВМ встановлювали спеціальну однокористувацьку ОС CMS (підсистема діалогової обробки, ПДО). На різних ВМ могли одночасно функціонувати різні ОС.

Коли програма, написана для ПДО, виконувала системний виклик, його перехоплювала копія ПДО, запущена на відповідній віртуальній машині. Потім ПДО виконувала відповідні апаратні інструкції, наприклад інструкції в ведення-виведення для читання диска. Ці інструкції перехоплював МВМ і перетворював їх на апаратні інструкції фізичної машини.

Віртуальні машини спільно використовували ресурси комп’ютера; наприклад, дисковий простір розподілявся між ними у вигляді віртуальних дисків, названих мінідисками. ОС, запущена у ВМ, використовувала мінідиски так само, як фізичні диски.

Сьогодні концепція віртуальних машин застосовується і в прикладному програмному забезпеченні; опис відповідних рішень (програмних емуляторів апаратного забезпечення, технології керованого коду) можна знайти на сайті супроводу.

2.3. Операційна система та її оточення

Із означення ОС випливає, що вона реалізує зв’язок між апаратним забезпеченням комп’ютера (через інтерфейс апаратного забезпечення) і програмами користувача (через інтерфейс прикладного програмування). У цьому розділі розглянуто особливості реалізації та використання цих інтерфейсів.

2.3.1. Взаємодія ОС і апаратного забезпечення

Взаємодію ОС і апаратного забезпечення слід розглядати з двох боків. З одного боку, ОС повинна реалізовувати засоби взаємодії з апаратним забезпеченням, з іншого – архітектуру комп’ютера треба проектувати з урахуванням того, що на комп’ютері функціонуватиме ОС.

Інтерфейс апаратного забезпечення має бути повністю схований від прикладних програм і користувачів, усю роботу з ним виконує ОС. Розглянемо особливості апаратної підтримки цього інтерфейсу і його використання в сучасних ОС.

Засоби апаратної підтримки операційних систем

Сучасні апаратні архітектури комп’ютерів реалізують базові засоби підтримки операційних систем. До них належать: система переривань, привілейований режим процесора, засоби перемикання задач, підтримка керування пам’яттю (механізми трансляції адрес, захист пам’яті), системний таймер, захист пристроїв введення-виведення, базова система введення-виведення (BIOS). Розглянемо ці засоби докладніше.

Система переривань є основним механізмом, що забезпечує функціонування ОС. За допомогою переривань процесор отримує інформацію про події, не пов’язані з основним циклом його роботи (отриманням інструкцій з пам’яті та їхнім виконанням). Переривання бувають двох типів: апаратні і програмні.

Апаратне переривання – це спеціальний сигнал (запит переривання, IRQ), що передається процесору від апаратного пристрою.

До апаратних переривань належать:

· переривання введення-виведення, що надходять від контролера периферійного пристрою; наприклад, таке переривання генерує контролер клавіатури при натисканні на клавішу;

· переривання, пов’язані з апаратними або програмними помилками (такі переривання виникають, наприклад, у разі збою контролера диска, доступу до забороненої області пам’яті або ділення на нуль).

Програмні переривання генерує прикладна програма, виконуючи спеціальну інструкцію переривання. Така інструкція є в системі команд більшості процесорів. Обробка програмних переривань процесором не відрізняється від обробки апаратних переривань.

Якщо переривання відбулося, то процесор негайно передає керування спеці­альній процедурі – оброблювачеві переривання. Після виходу з оброблювача про­цесор продовжує виконання інструкцій перерваної програми. Розрізняють два типи переривань залежно від того, яка Інструкція буде виконана після виходу з оброблювача: для відмов (faults) повторюється інструкція, що спричинила переривання, для пасток (traps) – виконується наступна інструкція. Усі переривання введення-виведення і програмні переривання належать до категорії пасток, біль­шість переривань через помилки є відмовами.

За встановлення оброблювачів переривань зазвичай відповідає ОС. Можна сказати, що сучасні ОС керовані перериваннями (interrupt-driven), бо, якщо ОС не зайнята виконанням якої-небудь задачі, вона очікує на переривання, яке й залучає її до роботи.

Для реалізації привілейованого режиму процесора в одному з його регістрів передбачено спеціальний біт (біт режиму), котрий показує, у якому режимі перебуває процесор. У разі програмного або апаратного переривання процесор автоматично перемикається у привілейований режим, і саме тому ядро ОС (яке складається з оброблювачів переривань) завжди отримує керування в цьому режимі. За будь-якої спроби безпосередньо виконати привілейовану інструкцію в режимі користувача відбувається апаратне переривання.

Засоби перемикання задач дають змогу зберігати вміст регістрів процесора (контекст задачі) у разі припинення задачі та відновлювати дані перед її подальшим виконанням.

Механізм трансляції адрес забезпечує перетворення адрес пам’яті, з якими працює програма, в адреси фізичної пам’яті комп’ютера. Апаратне забезпечення генерує фізичну адресу, використовуючи спеціальні таблиці трансляції.

Захист пам’яті забезпечує перевірку прав доступу до пам’яті під час кожної спроби його отримати. Засоби захисту пам’яті інтегровані з механізмами трансляції адрес: у таблицях трансляції утримується інформація про права, необхідні для їхнього використання, і про ліміт (розміри ділянки пам’яті, до якої можна отримати доступ з їхньою допомогою). Неможливо одержати доступ до пам’яті поверх ліміту або за відсутності прав на використання таблиці трансляції.

Системний таймер є апаратним пристроєм, який генерує переривання таймера через певні проміжки часу. Такі переривання обробляє ОС; інформацію від таймера найчастіше використовують для визначення часу перемикання задач.

Захист пристроїв введення -виведення ґрунтується на тому, введення-виведення визначені як привілейовані. Прикладні прог введення-виведення не прямо, а за посередництвом ОС.

Базова система введення-виведення (BIOS) – службовий програмний код, що зберігається в постійному запам’ятовувальному пристрої і призначений для ізоляції ОС від конкретного апаратного забезпечення. Зазначимо, що засоби BIOS не завжди дають змогу використати всі можливості архітектури: наприклад, процедури BIOS для архітектури ІА-32 не працюють у захищеному режимі. Тому сучасні ОС використовують їх тільки для початкового завантаження системи.

Апаратна незалежність і здатність до перенесення ОС

Як було згадано в розділі 2.2.2, компоненти ядра, які відповідають за безпосереній доступ до апаратного забезпечення, виділено в окремий рівень абстрагування від устаткування, що взаємодіє з іншою частиною системи через стандартні інтерфейси. Тим самим спрощується досягнення апаратної незалежності ОС.

Рівень абстрагування від устаткування відображає такі особливості архітектури, як число процесорів, типи їхніх регістрів, розрядність і організація пам’яті тощо. Що більше відмінностей між апаратними архітектурами, для яких призначена ОС, то складніша розробка коду цього рівня.

Крім рівня абстрагування від устаткування, від апаратного забезпечення залежать драйвери зовнішніх пристроїв. Такі драйвери проектують заздалегідь як апаратно-залежні, їх можна додавати та вилучати за потребою; для доступу до них зазвичай використовують універсальний інтерфейс.

Здатність до перенесення ОС визначається обсягом робіт, необхідних для того, щоб система могла працювати на новій апаратній платформі. ОС з такими властивостями має відповідати певним вимогам.

· Більша частина коду операційної системи має бути написана мовою високого рівня (звичайно для цього використовують мови С і C++, компілятори яких розроблені для більшості архітектур). Використання мови асемблера допустиме лише тоді, коли продуктивність компонента є критичною для системи.

· Код, що залежить від апаратного забезпечення (рівень абстрагування від устаткування) має бути відокремлений від іншої частини системи так, щоб у разі переходу на іншу архітектуру потрібно було переписувати тільки цей рівень.

2.3.2. Взаємодія ОС і виконуваного програмного коду

У роботі в режимі користувача часто необхідне виконання дій, реалізованих у ядрі ОС (наприклад, під час запису на диск із прикладної програми). Для цього треба забезпечити взаємодію коду режиму користувача та ОС. Розглянемо особливості такої взаємодії.

Системні виклики та інтерфейс програмування застосувань

Системний виклик – це засіб доступу до певної функції ядра операційної системи із прикладних програм. Набір системних викликів визначає дії, які ядро може виконати за запитом процесів користувача. Системні виклики задають інтерфейс між прикладною програмою і ядром ОС.

Розглянемо послідовність виконання системного виклику.

1. Припустимо, що для процесу, який виконується в режимі користувача, потрібна функція, реалізована в ядрі системи.

2. Для того щоб звернутися до цієї функції, процес має передати керування ядру ОС, для чого необхідно задати параметри виклику і виконати програмне переривання (інструкцію системного виклику). Відбувається перехід у привілейований режим.

3. Після отримання керування ядро зчитує параметри виклику і визначає, що потрібно зробити.

4. Після цього ядро виконує потрібні дії, зберігає в пам’яті значення, які слід повернути, і передає керування програмі, що його викликала. Відбувається перехід назад у режим користувача.

5. Програма зчитує з пам’яті повернені значення і продовжує свою роботу.

Як бачимо, кожний системний виклик спричиняє перехід у привілейований режим і назад (у мікроядровій архітектурі, як було зазначено вище, таких переходів може бути і більше).

Розглянемо способи передачі параметрів у системний виклик. До них належать:

· передача параметрів у регістрах процесора;

· занесення параметрів у певну ділянку пам’яті й передача покажчика на неї в регістрі процесора.

Системні виклики призначені для безпосереднього доступу до служб ядра ОС. На практиці вони не вичерпують (а іноді й не визначають) ті функції, які можна використати у прикладних програмах для доступу до служб ОС або засобів системних бібліотек. Для позначення цього набору функцій використовують термін інтерфейс програмування застосувань (Application Programming Interface, API).

Взаємозв’язок між функціями АРІ і системними викликами неоднаковий у різних ОС.

По-перше, кожному системному виклику може бути поставлена у відповідність бібліотечна функція, єдиним завданням якої є виконання цього виклику. Таку функцію називають пакувальником системного виклику (system call wrapper). Для програміста в цьому разі набір функцій АРІ виглядає як сукупність таких па­кувальників і додаткових функцій, реалізованих бібліотеками повністю або частково в режимі користувача. Це рішення прийняте за основу в UNIX; у такому разі Прийнято говорити про використання системних викликів у прикладних програмах (насправді у програмах викликають пакувальники системних викликів).

По-друге, можна надати для використання у прикладних програмах універсальний інтерфейс програмування застосувань (АРІ режиму користувача) і пов­ністю сховати за ним набір системних викликів. Для проіраміста кожна функція Такого АРІ є бібліотечною функцією режиму користувача, пакувальника в цьому разі немає, відомості про системні виклики є деталями реалізації ОС. Це властиве Windows-системам, де подібний універсальний набір функцій називають Win32 АРІ [ЗІ, 50].

Програмна сумісність

Дотепер ми розглядали виконання в ОС програм, розроблених спеціально для неї. Іноді буває необхідно виконати в середовищі ОС програми, розроблені для інших ОС і, можливо, для іншої апаратної архітектури. У цьому разі виникає проблема програмної сумісності.

Програмна сумісність означає можливість виконувати в середовищі однієї операційної системи програми, розроблені для іншої ОС. Розрізняють сумісність на рівні вихідних текстів (можливість перенесення вихідних текстів) та бінарну сумісність (можливість перенесення виконуваного коду).

Для сумісності на рівні вихідних текстів необхідно, щоб для всіх ОС існувала реалізація компілятора мови і АРІ, що його використовує програма.

Сьогодні таку сумісність забезпечує стандартизація розробки програмного забезпечення, а саме:

· наявність стандарту на мови програмування (насамперед на С і С++) і стандартних компіляторів;

· наявність стандарту на інтерфейс операційної системи (АРІ).

Робота зі стандартизації інтерфейсу операційних систем відбувається у рамках проекту POSIX (Portable Operating System Interface). Найбільш важливим стандартом є POSIX 1003.1 [3], який описує набір бібліотечних процедур (таких, як відкриття файла, створення нового процесу тощо), котрі мають бути реалізовані в системі. Цей процес стандартизації триває дотепер, останньою редакцією стандарту є базова специфікація Open Group/IEEE [103]. Зазначені стандарти відображають традиційний набір засобів, реалізованих в UNIX-сумісних системах.

Завдання забезпечення бінарної сумісності виникає тоді, коли потрібно запустити на виконання файл прикладної програми у середовищі іншої операційної системи. Таке завдання значно складніше в реалізації, найпоширеніший підхід до його розв’язання – емуляція середовища виконання. У цьому разі програма запускається під керуванням іншої програми – емулятора, який забезпечує динамічне перетворення інструкцій програми в інструкції потрібної архітектури. Прикладом такого емулятора є програма wine, яка дає можливість запускати програми, розроблені для Win32 АРІ, у середовищі Linux через емуляцію Win32 АРІ системними викликами Linux.

2.4. Особливості архітектури: UNIX і Linux

2.4.1. Базова архітектура UNIX

UNIX є прикладом досить простої архітектури ОС. Більша частина функціональності цієї системи міститься в ядрі, ядро спілкується із прикладними програмами за допомогою системних викликів. Базова структура класичного ядра зобжена на рис. 2.3 (див., наприклад, [33, 59]).

Система складається із трьох основних компонентів: підсистеми керування процесами, файлової підсистеми та підсистеми введення-виведення.

Підсистема керування процесами контролює створення та вилучення процесів, розподілення системних ресурсів між ними, міжпроцесову взаємодію, керування пам’яттю.

Файлова підсистема забезпечує єдиний інтерфейс доступу до даних, розташованих на дискових накопичувачах, і до периферійних пристроїв. Такий інтерфейс є однією з найважливіших особливостей UNIX. Одні й ті самі системні виклики використовують як для обміну даними із диском, так і для виведення на термінал або принтер (програма працює із принтером так само, як із файлом). При цьому файлова система переадресовує запити відповідним модулям підсистеми введення-виведення, а ті – безпосередньо периферійним пристроям. Крім того, файлова підсистема контролює права доступу до файлів, які значною мірою визначають привілеї користувача в системі.

Підсистема введення-виведення виконує запити файлової підсистеми, взаємодіючи з драйверами пристроїв. В UNIX розрізняють два типи пристроїв: символьні (наприклад, принтер) і блокові (наприклад, жорсткий диск). Основна відмінність між ними полягає в тому, що блоковий пристрій допускає прямий доступ. Для підвищення продуктивності роботи із блоковими пристроями використовують буферний кеш – ділянку пам’яті, у якій зберігаються дані, зчитані з диска останніми. Під час наступних звертань до цих даних вони можуть бути отримані з кеша.

Рис. 2.3. Архітектура UNIX

Сучасні UNIX-системи дещо відрізняються за своєю архітектурою.

· У них виділено окремий менеджер пам’яті, відповідальний за підтримку віртуальної пам’яті.

· Стандартом для реалізації інтерфейсу файлової системи є віртуальна файлова система, що абстрагує цей інтерфейс і дає змогу організувати підтриму різних типів файлових систем.

· У цих системах підтримується багатопроцесорна обробка, а також багатопотоковість.

Базові архітектурні рішення, такі як доступ до всіх пристроїв введення-виведення через інтерфейс файлової системи або організація системних викликів лишаються незмінними в усіх реалізаціях UNIX.

2.4.2. Архітектура Linux

В ОС Linux можна виділити три основні частини:

· ядро, яке реалізує основні функції ОС (керування процесами, пам’яттю, введенням-виведенням тощо);

· системні бібліотеки, що визначають стандартний набір функцій для використання у застосуваннях (виконання таких функцій не потребує переходу в привілейований режим);

· системні утиліти (прикладні програми, які виконують спеціалізовані задачі).

Призначення ядра Linux і його особливості

Linux реалізує технологію монолітного ядра. Весь код і структури даних перебувають в одному адресному просторі. У ядрі можна виділити кілька функціональних компонентів [63].

· Планувальник процесів – відповідає за реалізацію багатозадачності в системі (обробка переривань, робота з таймером, створення і завершення процесів, перемикання контексту).

· Менеджер пам’яті – виділяє окремий адресний простір для кожного процесу і реалізує підтримку віртуальної пам’яті.

· Віртуальна файлова система – надає універсальний інтерфейс взаємодії з різними файловими системами та пристроями введення-виведення.

· Драйвери пристроїв – забезпечують безпосередню роботу з периферійними пристроями. Доступ до них здійснюється через інтерфейс віртуальної файлової системи.

· Мережний інтерфейс – забезпечує доступ до реалізації мережних протоколів і драйверів мережних пристроїв.

· Підсистема міжпроцесової взаємодії – пропонує механізми, які дають змогу різним процесам у системі обмінюватися даними між собою.

Деякі із цих підсистем є логічними компонентами системи, вони завантажуються у пам’ять разом із ядром і залишаються там постійно. Компоненти інших підсистем (наприклад, драйвери пристроїв) вигідно реалізовувати так, щоб їхній код міг завантажуватися у пам’ять на вимогу. Для розв’язання цього завдання Linux підтримує концепцію модулів ядра.

Модулі ядра

Ядро Linux дає можливість на вимогу завантажувати у пам’ять і вивантажувати з неї окремі секції коду. Такі секції називають модулями ядра (kernel modules) [ЗО] і виконують у привілейованому режимі.

Модулі ядра надають низку переваг.

· Код модулів може завантажуватися в пам’ять у процесі роботи системи, що спрощує налагодження компонентів ядра, насамперед драйверів.

· З’являється можливість змінювати набір компонентів ядра під час виконання: ті з них, які в цей момент не використовуються, можна не завантажувати у пам’ять.

· Модулі є винятком із правила, за яким код, що розширює функції ядра, відповідно до ліцензії Linux має бути відкритим. Це дає змогу виробникам апаратного забезпечення розробляти драйвери під Linux, навіть якщо не заплановано надавати доступ до їхнього вихідного коду.

Підтримка модулів у Linux складається із трьох компонентів.

· Засоби керування модулями дають можливість завантажувати модулі у пам’ять і здійснювати обмін даними між модулями та іншою частиною ядра.

· Засоби реєстрації драйверів дозволяють модулям повідомляти іншу частину ядра про те, що новий драйвер став доступним.

· Засоби розв’язання конфліктів дають змогу драйверам пристроїв резервувати апаратні ресурси і захищати їх від випадкового використання іншими драйверами.

Один модуль може зареєструвати кілька драйверів, якщо це потрібно (наприклад, для двох різних механізмів доступу до пристрою).

Модулі можуть бути завантажені заздалегідь – під час старту системи (завантажувальні модулі) або у процесі виконання програми, яка викликає їхні функції. Після завантаження код модуля перебуває в тому ж самому адресному просторі, що й інший код ядра. Помилка в модулі є критичною для системи.

Особливості системних бібліотек

Системні бібліотеки Linux є динамічними бібліотеками, котрі завантажуються у пам’ять тільки тоді, коли у них виникає потреба. Вони виконують ряд функцій:

· реалізацію пакувальників системних викликів;

· розширення функціональності системних викликів (до таких бібліотек належить бібліотека введення-виведення мови С, яка реалізує на основі системних викликів такі функції, як printf());

· реалізацію службових функцій режиму користувача (сортування, функції обробки рядків тощо).

<== предыдущая лекция | следующая лекция ==>
Інтерфейс користувача | Компоненти режиму ядра
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 4303; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.087 сек.