Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Распределение Больцмана

 

Как мы рассмотрели ранее, микропараметры системы многих частиц являются случайными величинами и для определения их значений нужно знать функции распределения.

Существует различные функции распределения. В классической физике используется классическая статистика Максвелла-Больцмана, в которой движение частиц определяется законами Ньютона, частицы считаются различимыми.

Это распределение частиц по энергиям.

Пусть система состоит из материальных точек. Для каждой 3 скорости и 3 координаты. Разобьем все координатное пространство и пространство скоростей на участков и будем определять число частиц координаты и скорости которых попали в участок от до и от до . Энергия частиц подгруппы:

, где - энергия 1 частицы группы.

Энергия всей системы , где

Определим статистический вес состояния из групп по частиц (число размещений). Математика (комбинаторика) дает формулу:

, подставим это выражение в формулу Больцмана:

.

Учтем формулу Стирлинга для вычисления факториала:

при

при величиной можно пренебречь.

Тогда

У нас идеальный газ находится в фиксированном объеме. Запишем изменение энергии, связанное с тем, что меняется число частиц в группе.

Основное ТД тождество для открытой системы :

, так как , то

В нашем случае, изменение внутренней энергии частиц в группе и изменение числа частиц в группе связаны: ; , отсюда изменение энтропии, связанное с тем, что меняется число частиц в группе:

Подставим полученное выражение в основное ТД тождество для открытой изохорической системы:

сгруппируем

отсюда

. Теперь выразим отношение :

, Þ

, следовательно

, так как величина , то можно ее обозначить , тогда с учетом, того что вероятность частицы попасть в участок, мы получим распределение Больцмана: - вероятность того, что молекула идеального газа имеет энергию, т.е. находиться в -ом состоянии. Это дискретное распределение, но его можно сделать непрерывным.

В данном распределении остается скрытой предпосылка осуществления этого распределения – различимости частиц. Эта предпосылка с физической точки зрения ошибочна, потому что в природе нет различимых частиц, и все реально существующие частицы описываются либо распределением Ферми-Дирака, либо распределением Бозе-Эйнштейна. Однако в наиболее часто встречающихся ситуациях классической физики распределения Ферми-Дирака и Бозе-Эйнштейна практически совпадают с распределением Максвелла-Больцмана, которое благодаря этому является основным распределением классической статистической физики.

 

<== предыдущая лекция | следующая лекция ==>
Макроскопические и микроскопические системы. Постулат равновероятности. Эргодическая гипотеза. Статистический вес. Флуктуации | Репликация
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 560; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.