КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Числовые равенства и их свойства
Числовое выражение и его значение
Записи 3 + 8, 2 ∙ 7, (38 – 2): 4 называют числовыми выражениями. Они образуются из чисел, знаков действий и скобок. Дадим определение числового выражения в общем виде. Определение. Каждое число является числовым выражением. Если А и В – числовые выражения, то (А) + (В), (А) – (В), (А) ∙ (В), (А): (В) тоже являются числовыми выражениями. Выражения называют в зависимости от того, какое действие выполняется последним. Так выражение 142: 2 + 15 ∙ 4 называют суммой, т.к. последним в нем выполняется действие сложение, а выражение 24 – 3 ∙ 5 называют разностью, т.к. последним выполняется действие вычитание. В математике применяют следующие способы упрощения записи числовых выражений: 1) опускают скобки, содержащие лишь одно число: вместо записи (3) + (5) пишут 3 + 5; 2) опускают скобки, если несколько выражений складываются или вычитаются, причем операции выполняются по порядку слева направо. точно так же не пишут скобок и тогда, когда перемножаются или делятся несколько чисел, причем эти операции выполняются по порядку слева направо: 3 ∙ 9 ∙ 24: 8: 2; 3) т.к. условились сначала выполнять действия второй ступени (умножение и деление), а затем действия первой ступени (сложение и вычитание), то выражение (2 ∙ 3 ∙ 5) – (8: 2: 2) записывают так: 2 ∙ 3 ∙ 5 – 8: 2: 2. Выполнив действия, указанные в выражении, мы получим число, называемое значением числового выражения. Так, значение выражения 24 – 3 ∙ 5 равно 9. Если выражение состоит из одного числа, то значением выражения является само число. Для более сложных выражений порядок вычисления значений таков: 1) Если числовое выражение не содержит скобок, то сначала надо вычислить значения тех частей, выражения, в которые входят лишь операции умножения и деления, выполняя эти операции слева направо. после этого надо заменить соответствующие части выражений их значениями и выполнить их слева направо. 2) Если выражения содержат скобки, то надо взять все пары левых и правых скобок, внутри которых нет иных скобок и вычислить их значения по правилу 1. Если же скобки остались, то надо повторить операцию 2 с оставшимися скобками.
Пример. Найдите значение числового выражения ((36: 2 – 14) ∙ (42 ∙ 2 – 14) + 20): 2. 1) 36: 2 = 18; 2) 18 – 14 = 4; 3) 42 ∙ 2 = 84; 5) 4 ∙ 70 = 280; 6) 280 + 20 = 300;
Следует заметить, что не всякое числовое выражение имеет значение. Так, выражение
Пусть даны 2 числовых выражения А и В. Соединив их знаком равенства, получим некоторое высказывание, называемое числовым равенством. Равенство А = В считается истинным тогда и только тогда, когда оба выражения А и В имеют числовые значения, причем эти значения одинаковы. Пример. 1) 16: 2 = 3 + 5 – истинное числовое равенство, т.к. левая и правая части этого неравенства имеют значение 8; 2) 3 ∙ 4 = 15 – 4 – ложное равенство, т.к. значение левой части равно 12, а правой 11; 3) 15: (10 – 10) = 15 – ложно, т.к. выражение в левой части не имеет значения. Из данного выше определения вытекает, что если истинны равенства А = В и С = D, где А, В, С, D – числовые выражения, то при условии выполнимости соответствующих операций, истинны и равенства (А) + (С) = (В) + (D), (А) – (С) = (В) – (D), (А) ∙ (С) = (В) ∙ (D), (А): (С) = (В): (D), т.е. числовые равенства можно почленно складывать, вычитать, умножать, делить. Отношение равенства числовых выражений обладает свойствами: 1) рефлексивности (А = А); 2) симметричности (А = В Þ В = А); 3) транзитивности (А = В Ù В = С Þ А = С), т.о. данное отношение является отношением эквивалентности и множество числовых выражений разбивается на классы эквивалентности, состоящие из выражений, имеющих одно и то же значение; 4) если к обеим частям истинного числового равенства прибавить одно и то же числовое выражение, имеющее смысл, то полученное числовое равенство будет также истинным (А = В Þ (А) + (С) = (В) + (С)); 5) если обе части истинного числового равенства умножить на одно и то же числовое выражение, имеющее смысл, то полученное числовое равенство будет также истинным (А = В Þ (А) ∙ (С) = (В) ∙ (С)); 6) если обе части истинного числового равенства возвести в одну и ту же нечетную степень, то получим истинное числовое равенство (если п – нечетное натуральное число, то А = В Û (А) п = (В) п; 7) если обе части истинного числового равенства, левая и правая части которого имеют неотрицательное значение, возвести в одну и ту же четную степень, то получим истинное числовое равенство (если п – четное натуральное число, значения числовых выражений А и В неотрицательны, то А = В Û (А) п = (В) п. Если снять условие, что значения числовых выражений А и В неотрицательны, то вместо эквивалентности будем иметь лишь импликацию А = В Þ (А) п = (В) п.
Дата добавления: 2014-01-05; Просмотров: 2668; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |