Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Система дифференциальных уравнений Навье - Стокса




Динамика реальной (вязкой жидкости)

При изучении движения реальной (вязкой жидкости) можно пойти двумя разными путями:

воспользоваться готовыми дифференциальными уравнениями и их решения­ми, полученными для идеальной жидкости. Учёт проявления вязких свойств осуществляется с помощью введения в уравнения дополнительных попра­вочных членов уравнения, вывести новые уравнения для вязкой жидкости.

Для практической инженерный деятельности более приемлемым следует считать первый полуэмпирический путь, второй следует использовать лишь в тех случаях, когда требуется детальное изучение процесса движения вязкой жидкости. По этой причине ог­раничимся лишь записью систем дифференциальных уравнений Навье - Стокса и поверх­ностным анализом этих уравнений.

При= const и= const система уравнений значительно упростятся:

Пренебрегая величинами вторых вязкостейи считая жидкость несжимаемой

(р = const), уравнения Навье - Стокса запишутся в следующем виде:

К уравнениям Навье - Стокса в качестве дополнительного уравнения принимается уравнение неразрывности. Учитывая громоздкость и трудность прямого решения задачи в практической деятельности (в случаях, когда это считается допустимым) решение дости­гается первым методом (по аналогии с движением идеальной жидкости).

5.2. Уравнение Бернулли для элементарной струйки вязкой жидкости

Выделим в элементарной струйке жидко­сти двумя сечениями 1 - 1 и 2 - 2 отсек жид­кости. Отсек жидкости находится под дейст­вием сил давленияи сил тяжести на жидкость в отсеке действуют также силы инерции самой движущейся жидкости, а также силы трения, препятствующие перемещению жидкости. В результате действия сил внутрен­него трения часть механической энергии жид­кости расходуется на преодоление возникающих сопротивлений. По этой причине вели­чины гидродинамических напоров в сечениях будут неодинаковы. Естественно, что//2.Тогда разность гидродинамических напоров в крайних сечениях отсековбудут как раз характеризовать потери напора на преодоление сил трения. Эта величина носит название потерь напора на трение

В этом случае уравнение Бернулли примет следующий вид:

- потери удельной энергии (преобразование потенциальнойэнергии жидкости в тепловую энергию при трении).

Величинаносит название гидравлического уклона.




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 418; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.