КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Гаммирование
Абсолютно стойкий шифр. Простейшей и в то же время наиболее надежной изо всех схем шифрования является так называемая схема однократного использования (рис. 1.10), изобретение которой чаще всего связывают с именем Г. С. Вернама. Формируется m-разрядная случайная двоичная последовательность - ключ шифра, известный отправителю и получателю сообщения. Отправитель производит побитовое сложение по модулю 2 ключа и m-разрядной двоичной последовательности, соответствующей пересылаемому сообщению. Процесс расшифрования сводится к повторной генерации ключевой последовательности и наложения ее на зашифрованные данные. Уравнение расшифрования имеет вид Рис. 1.9. Схемы трехкратного использования алгоритма DES: а- с двумя ключами; б - с тремя ключами К. Шенноном доказано, что, если ключ является фрагментом истинно случайной двоичной последовательности с равномерным законом распределения, причем длина ключа равна длине исходного сообщения и используется этот ключ только 1 раз, после чего уничтожается, такой шифр является абсолютно стойким, его невозможно раскрыть, даже если криптоаналитик располагает неограниченным запасом времени и неограниченным набором вычислительных ресурсов. Действительно, противнику известно только зашифрованное сообщение с, при этом все различные ключевые последовательности к возможны и равновероятны, а значит, возможны и любые сообщения р, т. е. криптоалгоритм не дает никакой информации об открытом тексте.
Рис. 1.10. Схема однократного использования Целью противника может являться раскрытие криптосистемы, нахождение ключа, в крайнем случае дешифрование какого-либо закрытого сообщения. Однако он может быть удовлетворен, получив даже некоторую вероятностную информацию об исходном тексте сообщения. Например, известный криптоаналитику факт написания текста некоторого сообщения на английском языке, предоставляет ему некоторую априорную информацию об этом сообщении даже до анализа шифровки. В этом случае он заранее знает, что слово HELLO является более вероятным началом сообщения, чем набор букв FGHKM. Поэтому одной из целей криптоанализа может являться увеличение информации, относящейся к каждому возможному сообщению, таким образом, чтобы правильный текст был более вероятен. Предположим, противник перехватил шифровку ABCCD и знает (или предполагает), что использованный шифр- это шифр простой замены., Анализ шифровки позволяет сделать вывод, что исходное сообщение состоит из пяти букв, причем на третьей и четвертой позициях стоит одна и та же буква, а остальные отличны от нее и различны между собой. Противник не может считать, что это сообщение HELLO, потому что имеются и другие возможные сообщения, например TEDDY. Однако апостериорные вероятности таких открытых текстов возрастают относительно их априорных вероятностей. В то же время апостериорная вероятность таких открытых текстов, как PEACE или GATES, снижается до нуля вне завимости от их априорной вероятности. По, К. Шеннону, в совершенно секретных криптосистемах после анализа закрытых текстов апостериорные вероятности возможных открытых текстов остаются такими же, какими были их априорные вероятности.
Дата добавления: 2014-01-05; Просмотров: 423; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |