Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Проводная и беспроводная связи




Концепция EPIC (Explicitly Parallel Instruction Computing) определяет новый тип архитектуры, способной конкурировать по масштабам влияния с архитектурой RISC. Эта идеология направлена на то, чтобы упростить аппаратное обеспечение и, в то же время, извлечь как можно больше «скрытого параллелизма» на уровне команд, чем это можно сделать при реализации VLIW или суперскалярных стратегий.

Параллелизм на уровне команд и программ.

За последние два с половиной десятилетия компьютерная отрасль развивалась в соответствии с темпами увеличения производительности микропроцессоров. Отрасль использовала эти достижения, позволяя обходиться без кардинального переписывания программ в «параллельном виде», без смены языков и алгоритмов и, зачастую, даже без перекомпиляции самого кода. По крайней мере до последнего времени параллельная обработка на уровне команд утвердилась как единственный подход, позволяющий добиваться высокой производительности без серьезных изменений программного обеспечения.

Однако компьютеры достигали этой цели главным образом за счет серьезного увеличения сложности аппаратного обеспечения - сложности, которая стала настолько значительной, что превратилась в препятствие, не позволяющее отрасли добиваться еще более высокой производительности. Мы разработали тип архитектуры Explicitly Parallel Instruction Computing (EPIC) именно для того, чтобы обеспечить более высокую степень параллелизма на уровне команд, поддерживая при этом приемлемую сложность аппаратного обеспечения.

Более высокая производительность достигается как за счет совершенствования полупроводниковой технологии, в частности, увеличения скорости передачи сигналов в самой микросхеме, так и за счет увеличения плотности микросхем. Дальнейшего увеличения скорости выполнения программ можно добиться в первую очередь благодаря реализации определенного вида параллелизма. Параллелизм на уровне команд (instruction-level parallelism, ILP) стал возможен благодаря созданию процессоров и методик компиляции, которые ускоряют работу за счет параллельного выполнения отдельных RISC-операций. Системы на базе ILP используют программы, написанные на традиционных языках высокого уровня для последовательных процессоров, а обнаружение «скрытого параллелизма» автоматически выполняется благодаря применению соответствующей компиляторной технологии и аппаратного обеспечения.

Тот факт, что эти методики (как и увеличение скорости работы самих микросхем) не требуют от прикладных программистов дополнительных усилий, имеет крайне важное значение. Это решение резко отличается от традиционного микропроцессорного параллелизма, который предполагает, что программисты должны переписывать свои приложения. Если говорить о перспективе, становится очевидно, что многопроцессорный тип параллельной обработки останется важной технологией для компьютерной отрасли. Сейчас, тем не менее, параллельная обработка на уровне команд, является единственным надежным подходом, позволяющим добиться увеличения производительности без фундаментальной переработки приложений. Эти два типа параллельной обработки не исключают друг друга; самые эффективные многопроцессорные системы, вероятнее всего, будут создаваться на базе процессоров ILP.

За последние два с половиной десятилетия компьютерная отрасль развивалась в соответствии с темпами увеличения производительности микропроцессоров. Отрасль использовала эти достижения, позволяя обходиться без кардинального переписывания программ в «параллельном виде», без смены языков и алгоритмов и, зачастую, даже без перекомпиляции самого кода. По крайней мере до последнего времени параллельная обработка на уровне команд утвердилась как единственный подход, позволяющий добиваться высокой производительности без серьезных изменений программного обеспечения.

Однако компьютеры достигали этой цели главным образом за счет серьезного увеличения сложности аппаратного обеспечения - сложности, которая стала настолько значительной, что превратилась в препятствие, не позволяющее отрасли добиваться еще более высокой производительности. Мы разработали тип архитектуры Explicitly Parallel Instruction Computing (EPIC) именно для того, чтобы обеспечить более высокую степень параллелизма на уровне команд, поддерживая при этом приемлемую сложность аппаратного обеспечения.

Увеличение степени параллелизма

Более высокая производительность достигается как за счет совершенствования полупроводниковой технологии, в частности, увеличения скорости передачи сигналов в самой микросхеме, так и за счет увеличения плотности микросхем. Дальнейшего увеличения скорости выполнения программ можно добиться в первую очередь благодаря реализации определенного вида параллелизма. Параллелизм на уровне команд (instruction-level parallelism, ILP) стал возможен благодаря созданию процессоров и методик компиляции, которые ускоряют работу за счет параллельного выполнения отдельных RISC-операций. Системы на базе ILP используют программы, написанные на традиционных языках высокого уровня для последовательных процессоров, а обнаружение «скрытого параллелизма» автоматически выполняется благодаря применению соответствующей компиляторной технологии и аппаратного обеспечения.

Тот факт, что эти методики (как и увеличение скорости работы самих микросхем) не требуют от прикладных программистов дополнительных усилий, имеет крайне важное значение. Это решение резко отличается от традиционного микропроцессорного параллелизма, который предполагает, что программисты должны переписывать свои приложения. Если говорить о перспективе, становится очевидно, что многопроцессорный тип параллельной обработки останется важной технологией для компьютерной отрасли. Сейчас, тем не менее, параллельная обработка на уровне команд, является единственным надежным подходом, позволяющим добиться увеличения производительности без фундаментальной переработки приложений. Эти два типа параллельной обработки не исключают друг друга; самые эффективные многопроцессорные системы, вероятнее всего, будут создаваться на базе процессоров ILP.

Проводные сети - система высокой конфиденциальности, которая требует профессионального обслуживания. Пока один из недостатков проводных сетей является необходимость монтажных работ. Это ведет за собой "привязанность" к рабочему месту и отсутствие мобильности.

Локальная сеть позволяет сверхбыструю передачу данных между компьютерами, проводить работу с любой базой данных, осуществлять коллективный выход на просторы интернета, работать с электронной почтой, осуществлять печать информации на бумаге, используя только один сервер печати, и еще много того что оптимизирует рабочий процесс, и тем самым повышает эффективность работы компании.

Получение высоких результатов и достижений в области современных технологий позволило дополнить локальные сети "беспроводными" технологиями. Другими словами, беспроводные сети, которые работают на обмене радиоволнами, могут быть замечательным дополнением к любой части проводной сети. Их главной особенностью является то, что в местах, где архитектурные элементы помещения или здания, в котором находится компания или организация не обеспечивает кабельную сеть, с задачей могут справиться радиоволны.

Сегодня беспроводные сети позволяют пользователям обеспечивать подключение там, где затруднено кабельное подключение или требуется полная мобильность. В то же время беспроводные сети взаимодействуют с проводными сетями. В настоящее время должны быть приняты во внимание беспроводные решения при проектировании любых сетей - от малого офиса до предприятия. Это поможет вам сэкономить деньги, время и трудозатраты.

WI-FI - это современная беспроводная технология передачи данных по радиоканалу (wireless, wlan)

Преимущества Wi-Fi:

Никаких проводов.

Передача данных по сети осуществляется по «воздуху» при очень высоких частотах, которые не затрагивают и не вызывают электронных помех и вреда для здоровья человека.

Мобильность.

В виду того что беспроводная сеть не связана с проводами, вы можете изменить местоположение вашего компьютера в зоне действия точки доступа, не беспокоясь о нарушениях связи. Сеть легко собирается и разбирается. При переезде в другое помещение, вы можете даже забрать свою сеть с собой.

Уникальность технологии.

Возможна установка в местах, где установка проводной сети невозможна или нецелесообразна, в таких местах как выставки, конференц-залы.

Недостатки Wi-Fi:

Относительно высокая стоимость оборудования. Скорость зависит от среды передачи.

Хотя современные технологии позволяет достигать скорости до 108мб / с, что сравнимо со скоростью кабельных сетей, скорость зависит от среды передачи сигнала.

Для улучшения качества сигнала можно получить выгоду от установки дополнительной внешней антенны: узконаправленной для соединения в зоне прямой видимости либо чтобы сигнал распространялся в одном направлении и всенаправленной, когда необходимо увеличить зону покрытия в помещении.

Безопасность Беспроводной Сети.

В настоящее время используется Wi-Fi оборудование, которое оснащено комплектом оборудования безопасности и профессиональной настройке, позволяя достичь практически 100% гарантии безопасности беспроводной сети.

Тем не менее, беспроводные сети являются лишь дополнительным элементом локальной сети, где основная работа приходится на основной кабель для обмена данными. Основной причиной этого является феноменальная надежность проводной локальной сети, используемые во всех современных компаний и организаций, независимо от их размера и занятости.




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 1416; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.