Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Число Нуссельта считается безразмерным коэффициентом теплоотдачи и определяется по формуле

Однако формула Ньютона-Рихмана в практичных расчетах используется редко, так как коэффициент теплоотдачи в этом случае, как правило, имеет локальный характер. Это вызвано тем, что перепад температур не постоянен и в реальном оборудовании трудно определяем, поэтому в инженерной практике широко используются критерии подобия физических процессов, которые лежат в основе теории подобия.

Теория подобия – учение о подобных явлениях. У подобных явлений должны быть подобны поля всех физических величин характеризующих эти явления. Например, подобия в процессах теплоотдачи можно достигнуть при равенстве скоростей (или критерия, характеризующем режим течения – критерия Рейнольдса (Re)), вязкости, плотности, теплопроводности.

Исследование подобных явлений позволяет изучать явления на модели в меньшем масштабе. При этом устанавливают закономерности и взаимосвязи параметров в виде эмпирических зависимостей. Полученные эмпирические зависимости широко используются в тепловых расчетах. Методы и способы построения эмпирических зависимостей основаны на анализе экспериментальных данных и рассматриваются в теориях планирования экспериментов, математической статистики и математического моделирования.

Основные критерии подобия, используемые в тепловых расчетах:

1) число Re выражает отношение сил инерции скоростного напора к силам вязкого трения:

,

где - кинематическая вязкость среды; l – геометрический параметр, характеризующий проходное сечение, обычно диаметр канала или его эквивалентный диаметр;

2) число Прандтля характеризует отношение вязкости и температуропроводности веществ, учитывая пристеночные явления, и служит справочной величиной:

;

,

где a - коэффициент теплоотдачи, Вт/(м2×К);

l – геометрический параметр, м;

l - коэффициент теплопроводности среды, Вт/(м×К).

Критерий Nu определяется в зависимости от вида конвекции: вынужденной или естественной и зависит от соответствующих значений чисел Re, Gr, Pr. Эмпирические формулы устанавливаются для определенного диапазона этих критериев подобия.

В случае вынужденной конвекции общий вид эмпирической зависимости

Nu=A × Reв ×.

Например, для течения жидкости или газа в круглых трубах Nu=0,023 ×Re0,78 ×Pr0,34,

где A - учитывает относительный шаг между трубами, условие омывания труб; - относительный шаг, он всегда больше 1; h – шаг между трубами; d – диаметр трубы в пучке.

Различают плотные пучки 1,1<Х<1,4 и разряженные пучки Х>1,4. Например, плотные – трубчатка парогенератора АЭС (Х=1,2), разряженные – конвективные шахты котлов X>3,0.

В случае естественной конвекции Nu определяется через критерии Gr в общем виде

Nu=A(Gr×Pr)в.

 

Критерий Грасгофа Gr – отношение подъемной силы, возникающей в результате теплового расширения жидкости к силам тяжести, определяется по формуле

,

где b - температурный коэффициент объемного расширения жидкости;

Dt – перепад температур между стенкой и средой;

n - кинематическая вязкость;

l – геометрический параметр, в случае горизонтального расположения трубы равен ее диаметру, при вертикальном расположении равен ее высоте;

А и в – являются табличными величинами, зависят от произведения Gr×Pr, определяются по справочникам.

В случае конвекции в межтрубном пространстве при омывании пучков труб или стержней определяется эквивалентный диаметр по формуле

,

где П – смоченный периметр, м;

S – проходное или живое сечение канала, м2.

 

3.1.3. Лучистый теплообмен. Теплообмен излучением представляет собой процесс передачи тепла от одного тела к другому путем испускания электромагнитных волн. Все тела излучают и передают лучистую энергию без участия передающей среды. Тепловое излучение несет тепловую энергию главным образом в видимой и инфракрасной части электромагнитного спектра. Расчет теплового излучения основывается на законе Стефана— Больцмана, который гласит, что энергия, излучаемая единицей пло­щади поверхности черного тела, Вт/м2, пропорциональна абсолютной темпе­ратуре в четвертой степени:

Eo=so × T4.

Это уравнение определяет тепловой поток, излучаемый абсолютно черным телом. Энергия излучения реального тела меньше чем черного и может быть получена из этого уравнения при введении в него коэффи­циента, который называется излучательной способностью (степенью черноты) и обозначается e. Таким образом, лучистая энергия реальной поверхности Вт, площадью F определяется из соотношения

Q=F × e × so.

Между двумя поверхностями, каждая из которых «видит» другую, происходит непрерывный обмен энергией, при этом энергия передается от более горячей поверхности к более холодной. Результирующий лучистый поток энергии между двумя излучающими телами зависит от относительной интенсивности излучения и поглощения каждого из этих тел. Если допустить, что поверхность одного тела — серая, а дру­гого тела (или окружающей среды) — черная, то тепловой поток, Вт, мож­но выразить в виде соотношения

,

 

где Т 1 и Т 2 абсолютная температура излучающего и поглощаю­щего тела соответственно. В формулу вводятся многие поправочные коэффициенты, которые должны учитывать форму тел, углы видимо­сти, а также радиационные свойства поверхностей и среды, через которую проходит тепловое излучение.

В некоторых случаях, основываясь на линейной зависимости теп­лового потока от перепада температуры, аналогично коэффициенту теплоотдачи соприкосновением в пограничном слое aс, удобно вводить коэффициент теплоотдачи излучением aл. Тогда выражение для расче­та теплового потока, Вт, может быть представлено в виде

Q = Faл (T1-T2).

Для случая теплообмена, когда тепло передается одновременно конвекцией и излучением, можно использовать простое уравнение, учитывающее оба эти процесса теплопередачи:

Q = F(aс - aл) (T1-T2).

 

Любое тело с температурой больше абсолютного ноля -273,15°С излучает энергию. Однако количество излучаемой энергии незначительно. В тепловых расчетах, как правило, принято пренебрегать составляющей излучения, если температура теплообменной поверхности или среды ниже 400 °С. Это связано с тем, что доля ее излучения будет составлять менее 2-3% от общего количества передаваемого тепла.

Коэффициент теплоотдачи излучением определяется по формуле

 

,

 

где Q – тепловая мощность, Вт;

S - поверхность теплообмена, м2;

С=const=5б56 Вт/(м4К4) – излучательная способность абсолютно черного тела;

e0 – приведенная степень черноты обменивающихся теплом сред или тел, зависит от степени черноты среды или тела и от их освещаемых площадей. Например, экранные трубы в топке котла освещаются только с одной стороны. Кроме того, угловые трубы освещаются меньше чем центральные. Приведенная степень черноты изменяется в диапазоне 0-1 и определяется по формуле

,

 

где T1, T2 - температуры греющей среды и обогреваемой стенки соответственно, К.

Например, в случае теплообмена в топке котла T1 – температура дымовых газов, T2 - температура поверхности трубы.

3.1.4. Сложный теплообмен. Главная проблема, которая возникает при решении инженерных задач теплообмена, состоит в том, что прихо­дится рассматривать сочетание двух или трех основных видов теплооб­мена. Например, при расчетах теплового потока от зданий принимают, что тепло, теряемое через конструкционные элементы здания, переда­ется от внутренних поверхностей стен конвекцией и излучением. Теп­ло, передаваемое через элементы стенных панелей, проходит воздушные прослойки посредством конвекции, а монолит за счет теплопроводности затем рас­сеивается с внешней поверхности стены в окружающее пространство.

Очень часто в теплообменных аппаратах, поток горячего теплоносителя отделен от холодного непроницаемой твердой стенкой (поверхностные теплообменные аппараты). Для расчета теплопередачи необходимо знать коэффициенты теплоот­дачи с обеих сторон стенки и ее термическое сопротивление. Задача существенно усложняется, если стенка с обеих сторон имеет ребра, температура по длине которых неравномерна. В таких случаях удоб­но использовать коэффициент теплопередачи К системы, который обобщает все процессы, участвующие в теплообмене. В этом случае передаваемое тепло, Вт, можно определить из соотношения

 

Q = S К Dt.

Коэффициент теплопередачи — это величина, обратная сумме терми­ческих сопротивлений в системе, через которую распространяется тепловой поток. Этот параметр используется в задачах, в которых терми­ческое сопротивление различных составных частей подчиняется зако­ну аддитивности.

В реальном теплообменном оборудовании участвуют различные способы передачи тепла, поэтому такой теплообмен называется сложным. Например, теплоотвод от ТВЭЛа активной зоны ядерного реактора состоит из следующих процессов теплопроводности:

- цилиндрического источника тепла (топливного стержня);

- контактного слоя;

- оболочки и теплоотдачи от оболочки к теплоносителю.

В теплообменном оборудовании происходит, как правило, теплопередача через цилиндрическую стенку трубы. В этом случае перепады температур на каждом термическом сопротивлении упрощено могут быть определены из следующих соотношений (рис.3.2):

 

 

Рис. 3.2. Схема сложного теплообмена в трубе

Для многих тонкостенных оболочек, большинством из которых являются теплообменные трубы (dнар/dвк<1,7), допускается использовать формулу для плоских пластин. В этом случае коэффициент теплопередачи

,

а термическое сопротивление сложного теплообмена, схема которого представлена на рис.3.2.

.

Удачно спроектированный теплообменник характеризуется тем, что термические сопротивления имеют примерно равный порядок R0=10-4 - 10-5.

Большая разница в значениях термических сопротивлений свидетельствует о том, что одна из составляющих велика и поверхность теплообмена в целом используется не эффективно.

Правило сложного теплообмена гласит: коэффициент теплопередачи всегда меньше меньшего коэффициента теплоотдачи a или величины обратной любому термическому сопротивлению, участвующему в теплообмене.

Большие проблемы возникают в теплообменном оборудовании при образованиях на их поверхностях загрязнений (накипи). Например, при равных коэффициентах теплоотдачи греющей и обогреваемой сред a»aоб=5000 Вт/(м2×К), при использовании труб из углеродистой стали lст=50 В/(м×К) с толщиной стенки d=1мм=10-3м имеем равенство термических сопротивлений, м2×К/Вт:

;

.

Наличие отложений на одной из поверхностей теплообмена даже незначительной толщины dотл=0,1 мм при коэффициенте теплопроводности lотл=1,0 Вт/(м×К) дает термическое сопротивление слоя отложений Rотл=10-4, т.е. в 20 раз выше всех остальных. В результате коэффициент теплопередачи будет снижен в 20 раз.

 

<== предыдущая лекция | следующая лекция ==>
Теплопроводность материалов | Гидро- и аэродинамические расчеты
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 3573; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.