Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Предел функции нескольких переменных




Приведем определение предела функции двух переменных по Коши.

 

Определение. Число А называется пределом функции при , т.е. в точке , если для любого существует , такое, что при всех , удовлетворяющих условиям ||и ||, выполняется неравенство |— А|.

 

Данное определение в символьном виде можно записать так:

Для обозначения предела функции в точке используют и другую форму записи:

 

.

Замечание. При определении предела функции в точке полагают, что функция может быть и не определена в самой точке .

 

Пример. Доказать, пользуясь определением предела по Коши, что .

Решение. Область определения данной функции D. Выберем произвольное число и найдем , такое, что для любой точки , для которой справедливо , выполняется неравенство . Так как для любой точки Dсправедливо соотношение

 

,

 

то

.

 

Оценим :

.

Таким образом,

 

,

где — расстояние от точки до точки .

 

Следовательно, для любого мы нашли число , такое, что для любой точки , принадлежащей -окрестности точки , т.е. при , будет выполняться неравенство

.

Что и требовалось доказать.

 

Приведенные выше определения предела функции двух переменных без труда обобщаются на случай функций трех и более переменных. Обобщим, например, определение предела по Коши на случай функции независимых переменных.

 

Определение. Число А называется пределом функции при ,т.е. в точке , если для любого существует , такое, что при всех , удовлетворяющих условиям ||, ||,…, ||, выполняется неравенство |— А|.

 

 

Пользуясь понятием предела функции, можно дать определение бесконечно малой функции при (), вывести основные свойства бесконечно малых функций, сравнить бесконечно малые функции, доказать теорему о том, что разность между функцией, имеющей предел, и ее пределом есть бесконечно малая функция, сформулировать основные теоремы об арифметических операциях над пределами. Все эти теоремы для случая были рассмотрены при изучении функций одной переменной.





Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 360; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.