Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Касательная плоскость и нормаль к поверхности. Геометрическим образом (графиком) функции двух независимых переменных в пространстве R3 является некоторая поверхность Q




Геометрическим образом (графиком) функции двух независимых переменных в пространстве R3 является некоторая поверхность Q. Выберем на ней точку .

Определение. Касательной плоскостью к поверхности Q в данной точке называется плоскость, которая содержит все касательные к кривым, проведенным на поверхности через эту точку.

 

Уравнение касательной плоскости к поверхности в точке имеет вид

.

 

Если уравнение поверхности Q задано неявной функцией

, то:

, .

Подставим значения частных производных в уравнение касательной:

.

 

Следовательно, уравнение касательной плоскости к поверхности в точке в случае неявного задания функции имеет вид

Определение. Точка, в которой или хотя бы одна из этих производных не существует, называется особой точкой поверхности. В такой точке поверхность может не иметь касательной.

Определение. Нормалью к поверхности Q в данной точке называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности.

Запишем уравнения нормали к поверхности в точке , пользуясь условием перпендикулярности прямой и плоскости:

Если поверхность Q задана неявно функцией то уравнения нормали принимают вид

.

 

Пример. Найти уравнения касательной плоскости и нормали к поверхности в точке .

Решение. Уравнение поверхности задано явной функцией. Вычислим частные производные функции в точке :

, ,

, .

 

Тогда уравнение касательной плоскости примет вид

.

Найдем уравнения нормали:

Пример. Найти уравнение касательной плоскости и нормали к поверхности в точке .

Решение. Уравнение поверхности задано неявно. Вычислим частные производные функции в точке

, , ,

, , .

Следовательно, уравнение касательной плоскости имеет вид

.

Находим уравнения нормали

.





Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 451; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.