КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Реологические свойства дисперсных систем
Коллоидные системы обладают определёнными механическими свойствами – вязкостью, пластичностью, упругостью, прочностью. Свойства эти связаны со структурой подобных систем и поэтому называются структурно-механическими или реологическими свойствами. Структура разбавленных агрегативно устойчивых систем по ряду свойств аналогична структуре истинных растворов. Основное отличие состоит в том, что в дисперсных (гетерогенных) системах частицы дисперсной фазы и молекулы дисперсионной среды сильно различаются по размеру. Увеличение концентрации дисперсной фазы приводит к взаимодействию ее частиц. Изменение свойств дисперсных систем с ростом концентрации происходит постепенно до тех пор, пока не наступит коагуляция частиц. В коллоидной химии понятие структуры и структурообразования принято связывать именно с коагуляцией. В процессе коагуляции происходит образование пространственной структурной сетки из частиц дисперсной фазы, что резко увеличивает прочность системы. Таким образом, структурообразование в свободнодисперсных системах есть результат потери агрегативной устойчивости. По мере увеличения прочности структуры свободнодисперсных систем переходят в связнодисперсные системы. Структурно-механические свойства систем исследуют методами реологии. Реология – наука о деформациях и течении материальных систем. Реология изучает механические свойства систем по проявлению деформации под действием внешних напряжений. В коллоидной химии методы реологии используются для исследования структуры и описания вязкотекущих свойств дисперсных систем. Вещества, которые не обладают упругостью к внешним воздействиям, называются вязкими. Деформация означает относительное смещение точек системы, при котором не нарушается ее сплошность.
В соответствии с законом Гука относительная деформация (ε, θ) – отношение абсолютного смещения к размерам системы – прямо пропорциональна воздействующему на систему напряжению:
- для деформации кручения, где P – механическое напряжение, E и G – модули упругости, ε и θ – относительная деформация.
Рис. 27. Зависимость относительной деформации от напряжения.
I зона соответствует случаю упругой деформации, подчиняется закону Гука; II зона – частичной деформации: после снятия напряжения система частично возвращается в первичное состояние; III зона – деформация необратима: характерно увеличение относительной деформации при уменьшении напряжения, система переходит в текучее состояние, т.е. после снятия напряжения система не возвращается в первоначальное состояние.
Важнейшим критерием дисперных систем по отношению к внешнему воздействию является релаксация – явление уменьшения внутреннего напряжения без уменьшения деформации. Релаксация объясняется те, что в результате теплового движения частиц происходит изменение ее структуры. Период релаксации t - время, в течение которого внутреннее напряжение системы уменьшается в е раз. Для вязких систем t - маленькая величина, для упругих – большая величина. Одно и тоже тело может быть и упругим, и вязким в зависимости от времени внешнего воздействия t. В случае, если t<<t, то такая система ведет себя как упругая, и наоборот, если t>>t, то система – вязкая. Структурно-механические свойства систем обусловлены интенсивностью взаимодействия частиц дисперсной фазы друг с другом. По этом признаку различают свободнодисперсные и связнодисперсные системы. Свободнодисперсные системы – бесструктурные системы, в которых частицы дисперсной фазы свободно движутся в дисперсионной среде. Реологические свойства таких систем близки к реологическим свойствам дисперсионной среды. Связнодисперсные системы – структурированные системы, частицы дисперсной фазы взаимодействуя друг с другом, образуют пространственный каркас или сетку, в ячейках которых находится дисперсионная среда. Такого рода системы называются гелями или студнями. Процесс перехода золя в гель называется процессом гелеобразования или студнеобразования. Гель приобретает упругость и способен выдерживать незначительные механические нагрузки. В геле может происходить испарение дисперсионной среды с течением времени. Это приводит к уменьшению объема геля. Такого рода гели (высохшие) называются ксерогелями. Существует два варианта взаимодействия частиц дисперсной фазы в процессе гелеобразования. Эти варианты обусловлены расстояниями между взаимодействующими частицами: 1. Расстояние между частицами измеряется несколькими толщинами ДЭС. Это имеет место тогда, когда на кривой взаимодействия частиц в зависимости от расстояния имеется достаточно глубокий min и высокий потенциальный барьер. Такого рода гели называются рыхлыми гелями с низкой упругостью. Объемное содержание дисперсной фазы составляет 1-2%.
Рис. 28. Зависимость взаимодействия частиц от расстояния между ними в рыхлых гелях (а), в упругих гелях (б).
2. Расстояние между частицами дисперсной фазы ничтожно мало. Это обусловлено незначительным min на кривой взаимодействия частиц в зависимости от расстояния и малым потенциальным барьером в области отталкивания частиц. Такие гели более плотные, более упругие и доля (в%) дисперсных частиц больше, чем у рыхлых. Ребиндер предложил два типа гелевых структур: 3. Коагуляционные структуры (коагели) – эластичные, тиксотропийные гели: взаимодействие между частицами дисперсной фазы в них обусловлено Ван-дер-ваальсовскими силами, т.е. как правило между частицами находиться небольшой слой дисперсионной среды. Такие гели обладают эластичностью (эластомеры),.е. после снятия нагрузки система возвращаеся в исходное состояние. Коагели способны переходить в золь при повышении температуре, теряют упругость при механических нагрузках и снова переходят в зол – тиксотропия. Тиксотропия – способность к изотермическому обратному превращению золя в гель. Для коагелей также характерно явление синерезиса. Синерезис – процесса самопроизвольного уменьшения размеров геля с одновременным выделением наружу дисперсионной среды из геля в результате процесса слипания частиц. В этом случае образуются синергетический сгуток. При синергезисе уменьшается объем геля, но форма сохраняется. Синерезис – процесс обратимый. 4. Конденсационно-кристаллизационные системы (твердые гели). Основная причина возникновения – образование химической связи между частицами. Примером может быть цемент, гипс. Такие гели не обладают эластичностью и имеют высокую хрупкость.
Дата добавления: 2014-01-05; Просмотров: 1196; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |