Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод кинематических диаграмм

Читайте также:
  1. B) Метод калькуляции затрат, связанных с процессами
  2. I. Методы коммутации.
  3. II. 1 Выбор методов проведения маркетинговых исследований
  4. II. Метод расходных ставок
  5. II. Методология теории государства и права.
  6. III. Методы финансирования инвестиционного проекта
  7. III. Особенности методики идентификации исполнителя
  8. IV. Метод коэффициентов влияния
  9. Simplex метод
  10. VI. МЕТОДЫ ИССЛЕДОВАНИЯ
  11. Автоматизированные методы
  12. Адаптивные методы прогнозирования используются

Для анализа исследуемого механизма обычно необходимо знать законы перемещения, изменение скорости и ускорения ведомого звена в течение всего цикла движения, т.е. за полный оборот кривошипа. Для этого проводят графическое исследование кинематических параметров за полный цикл и по полученным значениям этих величин строят графики, которые называются кинематическими диаграммами. Кинематическая диаграмма дает наглядное графическое изображение изменения одного из кинематических параметров движения в зависимости от другого. Для перемещений S, скоростей V и касательных ускорений aτ точки исследуемого звена строят кинематические диаграммы в виде функций этих величин от времени t или от угла поворота φ кривошипа, т.к. при равномерном вращении последнего φ пропорционально t. Для кинематического анализа используют обычно наиболее простые ортогональные диаграммы. Особенно удобен метод кинематических диаграмм для исследования кинематики звеньев, движущихся возвратно-поступательно. В этом случае обычно строят график перемещений, откладывая расстояние движущейся точки звена от одного из крайних положений, как правило, от начала рабочего хода.

Рассмотрим построение диаграммы “пермещение-время” для ползуна кривошипно-ползунного механизма, изображенного на рис..5.

SB=SB(t).

Кривошип вращается равномерно, следовательно, ведущая точка A – палец кривошипа, в одинаковые промежутки времени проходит одинаковые участки пути. Строим две оси координат (рис. 6) и на оси абсцисс откладываем отрезок l в миллиметрах, изображающий в масштабе μt время одного полного оборота кривошипа (одного.цикла) T.

Рис..6 Диаграмма перемещений ползуна кривошипно-ползунного механизма

,
где n частота вращения кривошипа, об/мин;
μt масштаб времени, с/мм
l длина отрезка, изображающего время цикла, мм.

 

Отрезок l разбиваем на 12 равных частей и в точках 1,2,3,.….,11 откладываем параллельно оси ординат расстояния, равные перемещениям точки B от крайнего левого положения B0 ползуна в масштабе перемещений.μs. Если отрезки 1-1'=B0B1; 2-2'=B0B2 и т.д., то линейные масштабы плана механизма и диаграммы перемещений будут одинаковы. Соединив полученные точки 0,1',2',…..,0' плавной кривой, получаем колоколобразную кривую, которая представляет собой диаграмму перемещений, т.е. расстояний точки B (рис. 5) ползуна, измеренных от левого крайнего положения SB=SB(t).

При постоянной скорости вращения кривошипа ω1 можно считать, что по оси абсцисс отложено не время t, а углы его поворота φ, т.е. диаграмма SB=SB(t) будет одновременно и диаграммой SB=SB(φ). Масштаб угла поворота кривошипа μφ по оси абсцисс в этой диаграмме будет равен



.

Метод кинематических диаграмм основывается на правилах графического дифференцирования и интегрирования, сущность которых заключается в следующем. Построим график прямолинейного перемещения точки S=S(t) в функции времени (рис. 7).

Рис. 7

По оси ординат откладываем перемещение S в масштабе , по оси абсцисс – время t в масштабе . Действительные перемещения и время определим умножением отрезков, замеренных на диаграмме на соответствующие коэффициенты. В момент времени t перемещение точки на графике определяется координатой aa1 через бесконечно малый промежуток времени перемещение точки изменится на величину и будет определяться координатой bb1=aa1+ds; и – длины отрезков в мм, измеренные по соответствующим осям координат. Скорость точки . Так как , то

(3)

То есть скорость точки пропорциональна тангенсу угла наклона касательной к графику перемещений в этой точки.

Графическое дифференцирование основано на зависимости (3). Изобразим график s=f(t) прямолинейного перемещения точки (рис..8).

Рис. 8 Графическое дифференцирование методом касательных

Отметим на графике точки M, N, K и проведем через них касательные t0, t1, t2. Под графиком s=s(t) построим прямоугольную систему координат с такими же участками времени. Слева от оси перемещений отложим на оси времени на расстоянии H от начала координат точку p – полюс построения. Из полюса проведем прямые, параллельные касательным до пересечения с осью ординат pm'||t0; pn'||t1; pk'||t2. Полученные точки m', n', k' сносим на соответствующие ординаты и помечаем точки m, n, k, после чего соединяем их плавной кривой. Произвольная ордината полученной кривой, например on'=1n=Htgα. Таким образом, ординаты этой кривой, также как и скорость пропорциональны тангенсу наклона касательной к кривой s=s(t), следовательно они представляют собой скорость точки, движущейся прямолинейно в каком-то масштабе μv, который можно определить следующим образом. Истинное значение скорости

(4)

где ордината диаграммы скорости, мм;
μv масштаб скорости, м/с.

 

Приравняем правые части уравнений (3) и (4)

тогда масштаб скорости

(5)

Рассмотренный метод касательных на практике не совсем удобен, так как невозможно точно провести касательную к кривой без особых приспособлений. Обычно при построении кинематических диаграмм используют метод хорд, заменяя заданную кривую графиком в виде ломаной линии. Изобразим диаграмму “перемещение-время” для точки, движущейся прямолинейно (рис..9).

Рис. 9 Графическое дифференцирование методом хорд

Для этого строим две координатные оси, и ось времени разбиваем на ряд одинаковых отрезков. Точки a, b, c и т.д., обозначающие соответствующие перемещения соединяем ломаной линией. Под диаграммой s=s(t) строим прямоугольную систему координат, и ось времени разбиваем на такие же отрезки, что и на графике перемещения. От начала координат влево откладываем отрезок H и обозначим полюс p. Из полюса проводим прямые pb'||ab; pc'||bc; pd'||cd и т.д. Сносим полученные точки b', c', d' и т.д. на соответствующие ординаты и получаем ступенчатый график скорости. В середине каждого отрезка помечаем точки b1, c1, d1 и т.д. и соединяем их плавной кривой.

Так как , то для получения графика ускорений необходимо графически продифференцировать график скорости, пользуясь приемами, описанными выше. При криволинейном движении исследуемой точки диаграмма, построенная с использованием методов касательных или хорд будет представлять собой диаграмму тангенциальных ускорений aτ.

Масштаб ускорения определим по формуле

(6)

где H1 – полюсное расстояние диаграммы ускорений.

Подставив в выражение (6) значение μv из (5) получим вторую формулу для определения масштаба ускорений

.

Если точка движется по замкнутой траектории, то для графического дифференцирования ее перемещение рассматривается вдоль двух взаимно перпендикулярных осей.

Графическое интегрирование осуществляется как действие, обратное графическому дифференцированию.

<== предыдущая лекция | следующая лекция ==>
| Метод кинематических диаграмм

Дата добавления: 2014-01-05; Просмотров: 1076; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:



studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ip: 54.80.236.48
Генерация страницы за: 0.015 сек.