Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Кривая Безье

Разработана математиком Пьером Безье. Кривые и поверхности Безье были использованы в 60-х годах компанией "Рено" для компьютерного проектирования формы кузовов автомобилей. В настоящее время они широко используются в компьютерной графике.

Кривые Безье описываются в параметрической форме:

Значение t выступает как параметр, которому соответствуют координаты отдельной точки линии. Параметрическая форма описания может быть удобнее для некоторых кривых, чем задание в виде функции у =ƒ(х), поскольку функция ƒ(х) может быть намного сложнее, чем Px(t) и Py(t), кроме того, ƒ(x) может быть неоднозначной.

Многочлены Безье для Рx и Рy имеют такой вид:

где xi и yi — координаты точек-ориентиров Рi, а величины — это известные из комбинаторики, так называемые сочетания (они также известны как коэффициенты бинома Ньютона):

Значение да можно рассматривать и как степень полинома, и как значение, которое на единицу меньше количества точек-ориентиров.

Рассмотрим кривые Безье, классифицируя их по значениям т.

т = 1 (по двум точкам)

Кривая вырождается в отрезок прямой линии, которая определяется конечными точками Р о и Р1, как показано на рис. 3. 30:

m=2 (по трем точкам, рис. 3. 32):

Рис. 3.32. Кривая Безье (m=1) Кривая Безье (m=2)

т = 3 (по четырем точкам, кубическая, рис 3.33). Используется довольно часто, в особенности в сплайновых кривых:

Рис. 3.33. Кубические кривые Безье (m=3)

Геометрический алгоритм для кривой Безье

Этот алгоритм позволяет вычислить координаты (х, у) точки кривой Безье по значению параметра t.

1. Каждая сторона контура многоугольника, который проходит по точкам-ориентирам, делится пропорционально значению t.

2. Точки деления соединяются отрезками прямых и образуют новый многоугольник. Количество узлов нового контура на единицу меньше, чем количество узлов предшествующего контура.

3. Стороны нового контура снова делятся пропорционально значению t. И так далее. Это продолжается до тех пор, пока не будет получена единственная точка деления. Эта точка и будет точкой кривой Безье (рис. 3.34).

Рис. 3.34. Геометрический алгоритм для кривых Безье

<== предыдущая лекция | следующая лекция ==>
Инкрементные алгоритмы | Алгоритмы вывода фигур
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 449; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.