Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Плоскость, касательная к поверхности. Нормаль поверхности




Лекция №8(ИУ1, 2, 4)

Теорема Монжа

Две поверхности 2-го порядка, вписанные или описанные около третьей поверхности второго порядка, пересекаются по двум плоским кривым второго порядка (рис. 14).

Рис. 14

 

 

Плоскость, касательная к поверхности, образована касательными прямыми к двум любым линиям поверхности, пересекающимися в заданной на поверхности точке (рис. 1).

 

Рис. 1

Нормаль n поверхности в данной точке перпендикулярна к касательной плоскости (t 1t 2) в этой точке поверхности (см. рис. 1).

α - поверхность;

; b α; abA;

t 1 a; t 2 b, t 1t 2A;

n (t 1t 2).

Построение касательной плоскости и нормали к поверхности вращения (рис. 2)

 
 

 

 


Рис. 2




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 639; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.