Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Силы действующие на рабочие лопатки. Треугольники скоростей

 

Изменение параметров воздуха в элементах проточной части компрессора определяется соотношением величин скоростей и направлением их векторов. Рассмотрим треугольники скоростей на входе в рабочее колесо и на выходе из него. На рис. 8.1, 8.2, 8.10 обозначены характерные размеры компрессора: D0 - диаметр втулки рабочего колеса, D1 - диаметр рабочего колеса на входе, D1ср - средний диаметр рабочего колеса на входе, D2 - диаметр рабочего колеса на выходе, D3 - внешний диаметр диффузора, b3 - ширина диффузора, b2 - ширина лопаток колеса на выходе, b1 - ширина лопаток на входе (по среднему диаметру), b - ширина межлопаточного канала в произвольном сечении.

Если рассечь рабочее колесо цилиндрической поверхностью, ось которой совпадает с осью вращения компрессора, и развернуть сечение на плоскости, то лопатки рабочего колеса будут схематично представлены как на рис. 8.4, рядом профилей, движущихся с окружной скоростью и1. Лопатки в данном случае загнуты по направлению движения. Для обеспечения безударного входа воздуха вектор относительной скорости должен быть на

Окружная скорость составляет одну из сторон треугольника, изменение которой при c1=const вызывает изменение величины и направления относительной скорости . Для того чтобы обеспечить безударный вход потока воздуха на всем входном сечении компрессора, нужно увеличивать угол загиба лопаток в направлении от втулки к периферии, чтобы на любом диаметре он соответствовал углу . В межлопаточных каналах воздух вращается вместе с рабочим колесом и под действием центробежных сил перемещается от центра к правлен под углом к оси вращения с таким расчетом, чтобы этот угол был равен или близок по величине конструктивному углу загнутой части лопаток (обычно ). Вектор абсолютной скорости с1 имеет осевое направление. Окружная скорость

 

Если компрессор вращается с постоянным числом оборотов пк, то с изменением диаметра окружная скорость также будет изменяться. Минимальное значение и1 будет соответствовать диаметру Do; максимальное значение и2 приобретает на внешнем входном диаметре D1. Следовательно, по мере увеличения диаметра возрастают и и угол .

В расчете обычно пользуются средней величиной окружной скорости

периферии. Таким образом, воздух совершает вращательное движение вместе с колесом и относительное движение по каналам, а абсолютная скорость воздуха складывается из переносной (окружной) скорости и и относительной скорости . Относительная скорость, по ширине канала на данном диаметре D будет: возрастать по направлению движения. Давление на набегающую стенку 1 будет больше, чем на сбегающую 2 (рис. 8.6), поэтому возникает разность давлений по обе стороны лопатки Δр = р2 - р1. Усилие Δр создает момент сопротивления, для преодоления которого надо подвести к колесу внешний крутящий момент, равный по величине моменту сопротивления.

Рис. 8.6

 

Характер распределения относительной скорости и давления в межлопаточном канале на произвольном диаметре D показан на рис. 8.6. Здесь же изображен треугольник скоростей на выходе из рабочего колеса. Окружная (переносная) скорость и2 направлена по касательной к окружности рабочего колеса. Относительная скорость отклонена от радиального направления на угол в направлении, обратном вращению, что является следствием отмеченной неравномерности распределения потока воздуха по межлопаточным каналам. Частицы воздуха вследствие инерции как бы отстают от вращающегося колеса. Проекции векторов скорости сг и на два взаимно перпендикулярных направления дают радиальные и окружные составляющие этих скоростей. Из рис. 8.6 следует, что радиальная составляющая абсолютной скорости с2r равна радиальной составляющей относительной скорости ,

 

Для предотвращения вихреобразования и обратного течения воздуха в межлопаточном канале по рекомендации Б.С. Стечкина принимается .

Окружная составляющая относительной скорости

 

Окружная составляющая абсолютной скорости

Отношение

 

называется коэффициентом мощности, или коэффициентом уменьшения энергии. Оно зависит от числа и длины лопаток рабочего колеса: чем больше число и длина лопаток, тем меньше отклонение и тем, следовательно, больше величина

 

С учетом зависимости (8.20) = 0,85 ÷ 0,92.

Работа LK, сообщаемая в компрессоре 1 кг воздуха, по уравнению Л. Эйлера составляет

 

где с — окружная составляющая абсолютной скорости на входе в колесо (закрутка потока). При осевом входе с = 0 (см. рис. 8.4); иср - окружная скорость рабочего колеса на среднем радиусе; LrK - работа трения диска о воздух, находящийся в зазорах между корпусом и колесом компрессора.

При осевом входе воздуха с=0

 

Подставляя значение в (8.24), получим

 

Работа трения диска зависит от величины работы трения

 

где =0,04÷0,08 – коэффициент трения диска о воздух.

С учетом (26) работа компрессора определится из выражения

Универсальные характеристики представляют собой зависимость πк и к.п.д. от параметров, определяющих подобные режимы работы компрессора. Все сказанное относительно подобных режимов работы турбин справедливо и для комп

 

Без учета механических потерь на трение в подшипниках мощность компрессора может быть определена с учетом формул (8.18) и (8.27)

 

Если необходимо учесть механические потери, следует величину NK разделить на механический к.п.д. компрессора.

 

 

<== предыдущая лекция | следующая лекция ==>
Кинематика воздушного потока в конструктивных элементах осевого и центробежного компрессора | Факторы, влияющие на мощность, затрачиваемую на привод компрессора
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 1523; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.