КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
И в перпендикулярном направлении
Модули нормальной упругости в направлении оси волокна
Рассмотрим, как рассчитать модули упругости армированных КМ по известным упругим характеристикам и объемным концентрациям его компонентов. Остановимся на простейшем случае КМ – параллельно уложенные в одном направлении армирующие элементы, связанные между собой матричными прослойками (рис. 2.1). Пластины (монослои) таких материалов – основа для получения различных слоистых КМ, а по известным характеристикам однонаправленных композиций можно рассчитывать свойства композиций с различной ориентацией волокон в смежных слоях. Поэтому в дальнейшем основное внимание будем уделять свойствам однонаправленных КМ. Такие материалы трансверсально изотропны. Основные допущения, применяемые в расчете, сводятся к тому, что и волокна и матрица – изотропные упругие материалы, которые при нагружении КМ деформируются совместно (это обеспечивается наличием между ними жесткой связи).
Рис. 2.1. Схематическое изображение структуры однонаправленных КМ (черные области – волокна, белые – матрица)
Нагрузим рассматриваемую пластину силой Рх. При этом относительная деформация eхк композиции в направлении оси х в силу совместимости деформаций матрицы и волокна будет равна деформации матрицы eхм и волокон eхв:
(2.1)
Сумма сил, действующих на матрицу Рхм и на волокно Рхв, равна общей силе Рх:
(2.2) Воспользовавшись тем, что силу можно представить как произведение напряжения на площадь поперечного сечения, равенство (2.2) перепишем в виде
(2.3) где: ,и – растягивающие напряжения в матрице, волокне и всей композиции в направлении оси х соответственно: ,и – поперечные сечения матрицы, волокна и КМ, соответственно. Разделив обе части равенства (2.3) на Fк, получим
(2.4)
где: ,– объемная доля матрицы и волокна в КМ соответственно;
; ; .
Закон Гука для одноосного напряженного состояния позволяет записать:
; ; (2.5)
Здесь ,и – модули Юнга матрицы, волокна и композиции в направлении х соответственно. Поскольку материалы матрицы и волокон приняты изотропными, то в дальнейшем индексы направления у характеристик этих материалов будем опускать и использовать только индексы м и в. Если вместо напряжений в уравнение (2.4) подставить их выражения из уравнения (2.5) и воспользоваться условием (2.1), то можно получить выражение для определения модуля нормальной упругости в направление оси волокон Ехк:
(2.6)
Это выражение позволяет определить модуль нормальной упругости однонаправленного армированного КМ в направлении армирования по известным концентрациям и модулям упругости матрицы и волокон. Рассмотрим поведение модели (рис. 2.1) при нагружении ее силой, перпендикулярной к оси волокон. В этом случае напряжения в каждом из компонентов будут одинаковыми:
(2.7)
а абсолютная деформация Dук всей композиции будет равна сумме абсолютных деформаций матрицы Dум и волокон Dув:
(2.8)
Абсолютная деформация связана с относительной соотношением
где: l – длина деформируемого элемента. Из уравнения (2.8) получаем
(2.9) где: ,и – относительные деформации композиции, матрицы и волокна в направлении оси у соответственно; ,и – длина рассматриваемого элемента КМ, суммарная длина матричных прослоек и волокон в направлении у соответственно. Если для упрощения принять, что сечения волокон прямоугольные, то
, (2.10)
Разделив обе части уравнения (2.9) на lук с учетом зависимостей (2.10) получим
(2.11)
Согласно закону Гука, (относительная деформация равна частному от деления напряжений на модуль упругости). С учетом равенства (2.7) получим:
(2.12)
Дата добавления: 2014-01-05; Просмотров: 850; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |