КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Правило смесей. Прочность в направлении армирования для КМ, упроченных параллельными отрезками волокон, можно оценить по правилу смесей с учетом концевого эффекта
Прочность в направлении армирования для КМ, упроченных параллельными отрезками волокон, можно оценить по правилу смесей с учетом концевого эффекта. Рассмотрим, какое влияние оказывает длина волокон на средние растягивающие напряжения σв в них.
Рис. 2.11. Эпюры растягивающих напряжений в волокнах различной длины
1. При l < lкр по мере увеличения длины волокна растет как максимальное растягивающее напряжение (действует посредине волокна), так и среднее растягивающее напряжение в волокнах, которое можно рассчитать по формуле
Без большой ошибки можно допустить, что нормальные напряжения в волокнах растут от концов волокна к его середине по линейному закону (рис. 2.11). Тогда при l < lкр эпюры напряжений имеют вид, изображенный для волокон с длинами l1 и l2 (рис. 2.11, а, б). Максимальное напряжение изображено штриховой линией, среднее – штрихпунктирной. В этих случаях максимальные напряжения в волокнах не достигают их предела прочности и среднее нормальное напряжение.
Разрушаются такие КМ из-за вытягивания волокон из них. При этом среднее растягивающее напряжение в волокнах в момент разрушения КМ равно (τг.р·l)/dв уравнение аддитивности (2.19) принимает вид:
Таким образом, если l < lкр, то прочность однонаправленных КМ растет пропорционально объемной доле волокон, отношению l/dв прочности границы раздела и прочности матрицы, оставаясь при этом меньше прочности КМ, армированных непрерывными волокнами. 2. При l ³ lкр, когда длина волокна становится равной lкр, максимальное нормальное напряжение в средней части волокна достигает значения, равного растягивающему напряжению в бесконечно длинном волокне (рис. 2.11, в). При дальнейшем увеличении l (рис. 2.11. г) максимальное напряжение в волокне остается неизменным (равным ), но увеличиваются участки волокон, на которых действует это напряжение. Следовательно, растут и средние напряжения , т.е. для волокон длиной l1 < l2 < lкр < l4 имеет место соотношение <<<. Запишем среднее растягивающее напряжение волокна на концевых участках длиной 0...lкр/2 в виде произведения , где W – коэффициент, меньший 1. Доля этих участков, на которых действует напряжение , составляет Vв·(l – lкр)/l. Напряжение , усредненное по всей длине волокон, можно определить следующим образом:
Если растягивающее напряжение от концов волокон растет линейно, то W = 0,5. Тогда среднее напряжение в волокнах
.
В соответствии с правилом аддитивности, общее напряжение, приложенное к КМ, равно сумме средних напряжений в матрице и волокнах. Для КМ с дискретными волокнами, имеющими l > lкр, можно записать:
(2.30)
В момент разрушения , а . Подставив последнее значение вместо в уравнение (2.30) и заменив в нём напряжение в матрице напряжением , получим, формулу для оценки прочности КМ, армированных дискретными волокнами, которая наряду с влиянием объемной доли волокон учитывает и влияние их длины:
(2.31)
Как и при армировании непрерывными волокнами, предел прочности композиции с короткими волокнами растет пропорционально Vв, если Vв > Vmin. С увеличением соотношения l/lкр прочность КМ растет, приближаясь к прочности композиций с непрерывными волокнами (l/lкр = ¥). Сопоставив между собой уравнения (2.19) и (2.31) и приняв в последнем W» 0,5, получим соотношение между прочностями КМ, упрочненных дискретными и непрерывными волокнами:
Как показывают расчеты, уже при l/lкр = 10 прочность КМ с дискретными волокнами достигает 95% прочности КМ с непрерывными волокнами, что позволяет получить практически ту же прочность композиций, что и при армировании непрерывными волокнами, если отрезки волокон достаточно длины. Минимальную и критическую долю дискретных волокон в КМ рассчитывают так же, как и непрерывных волокон, например,
Доли Vкр.д и Vmin.д всегда больше, чем соответствующие значения Vкр.н и Vmin.н. Например, если КМ состоит из алюминия, армированного волокнами с σвв = 70 кгс/мм2, то Vкр.н = 8,3%; а доля Vкр.д = 17,4% при l/lкр = 1.
Дата добавления: 2014-01-05; Просмотров: 926; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |