![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Экспертные системы
ЭС предназначены, главным образом, для решения практических задач, возникающих в слабо структурированной и трудно формализуемой предметной области. ЭС были первыми системами, которые привлекли внимание потенциальных потребителей продукции искусственного интеллекта. Экспертные системы (ЭС) - это прикладные системы ИИ, в которых база знаний представляет собой формализованные эмпирические знания высококвалифицированных специалистов (экспертов) в какой либо узкой предметной области. Структура ЭС приведена на рис. 5.9.
ЭС состоит из следующих компонент: · База знаний предназначена для хранения экспертных знаний о предметной области, используемых при решении задач экспертной системой. База знаний состоит из набора фреймов и правил-продукций. o Фреймы используются в базе знаний для описания объектов, событий, ситуаций, прочих понятий и взаимосвязей между ними. Фрейм - это структура данных, состоящая из слотов (полей). o Правила используются в базе знаний для описания отношений между объектами, событиями, ситуациями и прочими понятиями. На основе отношений, задаваемых в правилах, выполняется логический вывод. В условиях и заключениях правил присутствуют ссылки на фреймы и их слоты. · База данных предназначена для временного хранения фактов или гипотез, являющихся промежуточными решениями или результатом общения системы с внешней средой, в качестве которой обычно выступает человек, ведущий диалог с экспертной системой. · Машина логического вывода - механизм рассуждений, оперирующий знаниями и данными с целью получения новых данных из знаний и других данных, имеющихся в рабочей памяти. Для этого обычно используется программно реализованный механизм дедуктивного логического вывода (какая- либо его разновидность) или механизм поиска решения в сети фреймов или семантической сети. Машина логического вывода может реализовывать рассуждения в виде: o дедуктивного вывода (прямого, обратного, смешанного); o нечеткого вывода; o вероятностного вывода; o унификации (подобно тому, как это реализовано в Прологе); o поиска решения с разбиением на последовательность подзадач; o поиска решения с использованием стратегии разбиения пространства поиска с учетом уровней абстрагирования решения или понятий, с ними связанных; o монотонного или немонотонного рассуждения, o рассуждений с использованием механизма аргументации; o ассоциативного поиска с использованием нейронных сетей; o вывода с использованием механизма лингвистической переменной. · Подсистема общения служит для ведения диалога с пользователем, в ходе которого ЭС запрашивает у пользователя необходимые факты для процесса рассуждения, а также, дающая возможность пользователю в какой-то степени контролировать и корректировать ход рассуждений экспертной системы. · Подсистема объяснений необходима для того, чтобы дать возможность пользователю контролировать ход рассуждений и, может быть, учиться у экспертной системы. Если нет этой подсистемы, экспертная система выглядит для пользователя как "вещь в себе", решениям которой можно либо верить, либо нет. Нормальный пользователь выбирает последнее, и такая ЭС не имеет перспектив для использования. · Подсистема приобретения знаний служит для корректировки и пополнения базы знаний. В простейшем случае это - интеллектуальный редактор базы знаний, в более сложных экспертных системах - средства для извлечения знаний из баз данных, неструктурированного текста, графической информации и т.д. Контрольные вопросы 1. Приведите структуры следования и ветвления (полное и неполное). 2. Приведите структуры циклов Пока и До. 3. Отличие циклов До и Пока. 4. На чем основано нисходящее проектирование? 5. Что вы можете сказать о концепции модульного проектирования? 6. Что такое объект в объектно-ориентированном программировании? 7. Три принципа объектно-ориентированного программирования. 8. Особенность декларативного программирования. 9. Перечислите методологии программирования. 10. Что такое CASE-системы? 11. В каких областях применяются экспертные системы? 12. Что входит в состав экспертной системы? 13. Отличие знаний от данных. 14. Приведите модели представления знаний. 15. Что такое продукционная модель представления знаний. 16. Что такое семантические сети в представлении знаний. 17. Что такое фреймы в представлении знаний. 18. Какие стратегии вывода для продукционной модели вы знаете?
Дата добавления: 2014-01-05; Просмотров: 452; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |