Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Интерферометр Майкельсона

Рассмотрим вначале подробнее одну схему, на которой очень отчетливо выступают все наиболее существенные детали интерференционной схемы.

Эта схема, известная под названием билинзы Бийе, осуществляется с помощью линзы, разрезанной по диаметру; обе половины слегка разводятся, благодаря чему получаются два действительных изображения S1 и S2 светящейся точки S. Прорезь между полулинзами закрывается экраном К (рис. 7.1).

Интерференция наблюдается в области, где перекрываются оба световых потока, идущих от S1 и S2. Точка М интерференционного поля имеет освещенность, зависящую от разности хода двух интерферирующих лучей. На этой схеме ясно видно, что интерферирующие световые потоки задаются размерами телесных углов Ω, величина которых зависит от угла 2 φ =между лучами, определяющими перекрывающиеся части пучков.

Этот угол 2 φ мы назовем апертурой перекрывающихся пучков. Максимальное значение угла 2 φ соответствует условию S1Q1 || S2Q2 и S1R1 || S2R2; при этом экран расположен в бесконечности. Обычно угол 2 φ несколько меньше, ибо экран располагается на конечном расстоянии D, хотя и большом по сравнению с S1S2 Величина апертуры 2 φ определяет собой угловые размеры поля интерференции, средняя освещенность которого зависит от яркости и угловых размеров изображений источника S1 и S2. Полный поток, проходящий через поле интерференции, пропорционален площади этого поля и, следовательно, углу 2 φ. В интерференционном поле благодаря интерференции происходит перераспределение освещенности — образуются интерференционные полосы.

Угол 2ω между соответствующими лучами, идущими от S через каждую из двух ветвей интерферометра к М, представляет собой угол раскрытия лучей, определяющий интерференционный эффект в точке М. Практически то же значение имеет этот угол и для любой другой точки интерференционного поля. Этот угол мы будем называть апертурой интерференции. Ему соответствует в поле интерференции угол схождения лучей 2 ω, величина которого связана с углом 2ω правилами построения изображений. При неизменном расстоянии до экрана 2 ω тем больше, чем больше 2ω.

Существуют весьма многочисленные устройства, осуществляющие расположения, необходимые для получения интерференционных картин. Одним из приборов такого рода является интерферометр Майкельсона, сыгравший громадную роль в истории пауки.

Основная схема интерферометра Майкельсона изображена на рис. 7.2. Пучок от источника L. падает па пластинку P1, покрытую тонким слоем серебра или алюминия. Луч АВ, прошедший через пластинку P2 отражается от зеркала S1, и, попадая опять па пластинку P1 частично проходит через нее, а частично отражается по направлению АО. Луч AC отражается от зеркала S2, и, попадая па пластинку P1, частично проходит также по направлению АО. Так как обе волны 1 и 2, распространяющиеся по направлению АО, представляют собой расчлененную волну, исходящую из источника L, то они когерентны между собой и могут интерферировать друг с другом. Так как луч 2 пересекает пластинку P1 три раза, а луч 1 — один раз, то на его пути поставлена пластинка P2, идентичная Р1; чтобы скомпенсировать добавочную разность хода, существенную при работе с белым светом.

Наблюдаемая интерференционная картина будет, очевидно, соответствовать интерференции в воздушном слое, образованном зеркалом S2 и мнимым изображением S1' зеркала S1 в пластинке Р1. Если S1, и S2 расположены так, что упомянутый воздушный слой плоскопараллелен, то получающаяся интерференционная картина представится полосами равного наклона (круговыми кольцами), локализованными в бесконечности, и следовательно, наблюдение их возможно глазом, аккомодированным на бесконечность (или трубой, установленной на бесконечность, или на экране, расположенном в фокальной плоскости линзы).

Конечно, можно пользоваться и протяженным источником света. При малой толщине воздушного слоя в поле зрения зрительной трубы наблюдаются редкие интерференционные кольца большого диаметра. При большой толщине воздушного слоя, т. е. большой разности длин плеч интерферометра, наблюдаются частые интерференционные кольца малого диаметра уже около центра картины. Угловой диаметр колец в зависимости от разности длин плеч интерферометра и порядка интерференции определяется из соотношения 2 d соs r = . Очевидно, что перемещение зеркала на четверть длины волны будет соответствовать при малых значениях угла r переходу в поле зрения светлого кольца на место темного, и наоборот, темного на место светлого.

Передвижение зеркала осуществляется при помощи микрометрического винта, перемещающего зеркало на специальных салазках. Так как в больших интерферометрах Майкельсона перемещение зеркала параллельно самому себе должно происходить на несколько десятков сантиметров, то понятно, что механические качества этого прибора должны быть исключительно высоки.

Для придания зеркалам правильного положения они снабжены установочными винтами. Нередко зеркала устанавливают таким образом, что эквивалентный воздушный слой имеет вид клина. В таком случае наблюдаются интерференционные полосы равной толщины, располагающиеся параллельно ребру воздушного клина.

При больших расстояниях между зеркалами разность хода между интерферирующими лучами может достигать огромных значений (свыше 106 λ), так что будут наблюдаться полосы миллионного порядка.

Понятно, что в этом случае необходимы источники света очень высокой степени монохроматичности.

 

<== предыдущая лекция | следующая лекция ==>
Интерференция в плоскопараллельных пластинках. Полосы равного наклона | Интерференция немонохроматических световых пучков
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 1019; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.