КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Магнитные материалы
Любое вещество, помещённое в магнитное поле приобретает магнитный момент М. Магнитные момент единицы объёма называют намагниченностью jm, [А/м]: . При неравномерном намагничивании оценивают величину Jm: . Связь намагниченности с напряжённостью магнитного поля: , где - магнитная восприимчивость, Н – напряжённость магнитного поля. Магнитная восприимчивость – способность вещества намагничиваться. Намагниченное тело, находящееся во внешнем поле, создаёт собственное магнитное поле, направленное в изотропных средах параллельно или антипараллельно внешнему полю. Вследствие этого величина магнитной индукции вещества будет равна алгебраической сумме внешнего и внутреннего полей: где - относительная магнитная проницаемость – показывает, во сколько раз магнитная индукция в веществе больше чем в вакууме.
Классификация веществ по магнитным свойствам По реакции на внешнее магнитное поле и характеру внутреннего магнитного упорядочения все вещества делятся на 5 групп: · Диамагнетики · Парамагнетики · Ферромагнетики · Антиферромагнетики · Ферримагнетики
Диамагнетики К ним относятся вещества, у которых магнитная восприимчивость отрицательна и не зависит от напряжённости внешнего магнитного поля. Диамагнетизм обусловлен небольшим изменением угловой скорости орбитального вращения электронов в атоме при попадании этого атома в магнитное поле. Изменение скорости – проявление закона электромагнитной индукции на атомарном уровне. При этом орбита электрона рассматривается как некий замкнутый контур, по которому течёт ток, и этот контур не имеет активного сопротивления. Очевидно, что диамагнетизм универсален, присущ всем веществам, однако в большинстве случаев он маскируется другими более сильными магнитными проявлениями. [Можно провести параллель с диэлектриками: электронная поляризация маскируется более сильными видами поляризации] К чистым диамагнетикам относят инертные газы, многие жидкости (вода, нефть и её производные), ряд металлов (Cu, Ag, Au, Zn, Hg,…), большинство полупроводников (элементарные, соединения AIIIBV, AIIBVI), органические соединения и неорганические стёкла и многие другие. Численное значение магнитной восприимчивости составляет ─1(10-6…10-7). Она слабо зависит от температуры, так как определяется внутриатомными процессами. Внешним проявлением диамагнетизма является выталкивание диамагнетиков из неоднородного магнитного поля.
Парамагнетики К ним относят вещества с положительной магнитной восприимчивостью, не зависящей от внешнего магнитного поля. В парамагнетике атомы обладают элементарным магнитным моментом даже в отсутствии внешнего магнитного поля. Но из-за теплового движения суммарный заряд без внешнего магнитного поля равен нулю. Внешнее поле, накладываемое на парамагнетик, создаёт преимущественную ориентацию, которая, тем не менее, не является строгой. Температура сильно влияет на магнитную восприимчивость материала. Зависимость магнитной восприимчивости от температуры определяется законом Кюри – Вейса. При комнатной температуре величина km составляет у разных веществ от 10-3 до 10-6. Следовательно, их магнитная проницаемость незначительно отличается от единицы. Физическое проявление парамагнетизма – втягивание парамагнетика в неоднородное магнитное поле. К числу парамагнетиков относят кислород, окись азота, щелочные и щелочноземельные металлы, некоторые переходные металлы (Al), соли железа, кобальта, никеля. [аналог дипольно-релаксационной поляризации]
Ферромагнетики К ним относят вещества с большим положительным значением магнитной восприимчивости (до 106), которая сильно зависит от температуры и напряжённости внешнего магнитного поля. Им присуща внутренняя магнитная упорядоченность, которая характеризуется наличием макроскопических областей с параллельно ориентированными магнитными моментами атомов (доменов). Важнейшей особенностью является способность намагничиваться до насыщения в слабых магнитных полях. Намагниченность до насыщения ведёт к переходу в однодоменное состояние. [аналог спонтанной поляризации]
Антиферромагнетики К ним относят вещества, в которых ниже некоторой температуры спонтанно возникает антипараллельная ориентация элементарных магнитных моментов одинаковых атомов или ионов кристаллической решетки. Для антиферромагнетиков характерна небольшая положительная магнитная восприимчивость: у разных веществ от 10-3 до 10-5, она сильно зависит от температуры. При нагревании, как и ферромагнетики, испытывают фазовый переход в парамагнетическое состояние. У ферромагнетиков такой переход происходит в точке Кюри, а у антиферромагнетиков – в точке Нееля (или антиферромагнитной точке Кюри). При комнатной температуре к ним относят хром, марганец, редкоземельные элементы (цезий, неодим, самарий, таллий и др.). Типичные антиферромагнетики – простейшие химические соединения на основе металлов переходной группы: оксиды, галогениды, сульфиды, карбонаты и тому подобные. Всего около 1000 химических соединений.
Ферримагнетики К ним относятся вещества, с нескомпенсированным антиферромагнетизмом. Подобно ферромагнетикам они обладают высокой магнитной восприимчивостью, которая существенно зависит от температуры и напряжённости внешнего магнитного поля. Имеются некоторые различия. Свойствами ферримагнетиков обладают некоторые упорядоченные сплавы металлов, но главным образом – оксидные соединения, среди которых наибольший интерес представляют ферриты (именно от них и получила название группа).
Очевидно, что сильными магнитными свойствами обладают две групы: ферромагнетики и ферримагнетики. Именно они представляют интерес для дальнейшего изучения.
Природа ферромагнитного состояния Для образования сильных магнитных свойств у вещества необходимо выполнение двух условий: 1.Наличие элементарного магнитного момента атомов вещества. 2.Должна быть параллельная ориентация этих магнитных моментов. Отличным от нуля магнитным моментом обладают те атомы и ионы, которые в своих электронных оболочках имеют нескомпенсированные спины. Как известно, на одной орбитали атома не могут находиться более двух электронов с противоположными спиновыми моментами. Если на орбитали останется один электрон, то его движение вокруг ядра атома создает пусть очень маленькое, но магнитное поле, которое и будет тем самым элементарным магнитным моментом атома. Параллельную, антипараллельную или хаотическую ориентацию элементарных магнитных моментов создаёт обменное взаимодействие электронных оболочек соседних атомов. Сила обменного взаимодействия (А) существенно зависит от размера атома (d) и от расстояния между атомами (а).
Рисунок 49
I антипараллельное расположение элементарных магнитных моментов. Антиферромагнетики. II параллельное расположение элементарных магнитных моментов. Ферромагнетики (Fe, Co, Ni). III хаотическое расположение элементарных магнитных моментов. Парамагнетики.
С этой позиции очевидно, что величина и знак силы обменного взаимодействия определяются для каждого конкретного вещества расстоянием между соседними атомами. Поскольку оно изменяется с изменением температуры, она оказывает сильное влияние на магнитные свойства этих веществ, а при некоторой температуре антиферромагнетики и ферромагнетики переходят в парамагнитное состояние, когда обменное взаимодействие ослабляется очень сильно.
Формирование магнитных свойств ферримагнетиков Ферримагнетики получили своё название от ферритов – соединений окислов железа с окислами других металлов. Общая формула имеет вид Fe2O3·МеО. В технике находят применение сотни различных ферритов. Наиболее широкое распространение характерно для ферритов со структурой шпинели. Химический сосав ферритов (феррошпинелей) соответствует формуле МеFe2O4. Наличие или отсутствие магнитных свойств у ферритов определяется порядком расположения атомов металла, железа и кислорода. Магнитоактивные катионы металла и железа в ферритах находятся относительно друг от друга, и их взаимодействие очень слабо. Однако здесь имеет место так называемое косвенное обменное взаимодействие всех атомов, входящих в химическое соединение. При этом атомы металла и железа приобретают сонаправленные элементарные магнитные моменты за счёт участия в обменном взаимодействии атома кислорода.
Ме O Fe
Дата добавления: 2014-01-05; Просмотров: 653; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |