Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Локальная и интегральная теоремы Муавра-Лапласа. Формула Пуассона

Формула Бернулли

Формула полной вероятности. Формула Байеса

Варианты 1-10 (N – номер варианта)

Имеются три одинаковые с виду урны. В первой N белых шаров и
(25 – N) черных шаров; во второй урне (20 – N) белых и (N + 5) черных; в третьей только белые шары. Из наугад выбранной урны достают один шар. Какова вероятность, что этот шар белый?

Варианты 11-20 (N – номер варианта)

Имеются две урны: в первой (N – 5) белых шаров и (30 – N) черных шаров; во второй урне (21 – N) белых и (N + 4) черных. Из первой урны во вторую перекладывают, не глядя, один шар. После этого из второй урны достают один шар. Найти вероятность того, что этот шар будет белым.

Варианты 21-30 (N – номер варианта)

Имеются три урны: в первой (N – 15) белых шаров и (35 – N) черных шаров; во второй урне (40 – N) белых и (N – 20) черных; в третьей – N белых шаров (черных нет). Из наугад выбранной урны достали один шар. Этот шар оказался белым. Найти вероятность того, что шар достали из первой урны.

 

Варианты 1-10 (N – номер варианта)

В семье 6 детей. Вероятность рождения мальчика равна 0,51. Найти вероятность того, что среди этих детей:

N = 1) один мальчик;

N = 2) более одного мальчика;

N = 3) два мальчика;

N = 4) более двух мальчиков;

N = 5) не более двух мальчиков;

N = 6) три мальчика;

N = 7) более трех мальчиков;

N = 8) не более трех мальчиков;

N = 9) четыре мальчика;

N = 10) не более четырех мальчиков.

Варианты 11-20 (N – номер варианта)

Отрезок АВ разделен точкой С в отношении 3:1. На этот отрезок наудачу брошено шесть точек. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения. Найти вероятность того, что:

N = 11) одна точка окажется левее точки С;

N = 12) более одной точки окажется левее точки С;

N = 13) две точки окажется левее точки С;

N = 14) более двух точек окажется левее точки С;

N = 15) не более двух точек окажется левее точки С;

N = 16) три точки окажется левее точки С;

N = 17) более трех точек окажется левее точки С;

N = 18) не более трех точек окажется левее точки С;

N = 19) четыре точки окажется левее точки С;

N = 20) не более четырех точек окажется левее точки С.

Варианты 21-30 (N – номер варианта)

Монету бросают 6 раз. Найти вероятность того, что «герб» выпадет:

N = 21) один раз;

N = 22) более одного раза;

N = 23) два раза;

N = 24) более двух раз;

N = 25) не более двух раз;

N = 26) три раза;

N = 27) более трех раз;

N = 28) не более трех раз;

N = 29) четыре раза;

N = 30) не более четырех раз.

 

Варианты 1-10 (N – номер варианта)

Найти вероятность того, что событие А наступит ровно (70 + N) раз в (250 + N) независимых испытаниях, если вероятность появления этого события в каждом испытании равна 0,2.

Варианты 11-20 (N – номер варианта)

Вероятность появления события А в каждом из (120 + N) независимых постоянна и равна 0,8. Найти вероятность того, что событие А появится не менее (70 + N) раз.

Варианты 21-30 (N – номер варианта)

Проведено (10 × N) независимых испытаний с вероятностью появления события А в каждом из них (N /1000). Найти вероятность того, что событие А появится точно 2 раза.

 

<== предыдущая лекция | следующая лекция ==>
Теоремы сложения и умножения вероятностей | При Екатерине II и Павле I
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 794; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.