КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Понятие устойчивости по Ляпунову
Пусть САУ описывается с помощью системы уравнений при заданных начальных условиях: Решением данного уравнения является как функция начальных значений (уравнение невозмущенного движения). Здесь xi0 – установившееся движение. К системе приложено внешнее воздействие, которое привело к отклонению движения от установившегося . Для данных отклонений можно записать систему уравнений: Уравнение - является уравнением возмущенного движения. Невозмущенное движение () называется устойчивым по отношению к переменным xi, если для любого положительного числа А2, как бы мало оно ни было, найдется другое положительное число l2, которое удовлетворяет условию для всех возмущений: , а возмущенное движение удовлетворяет условию , где mi – весовые коэффициенты. Движение будет устойчивым, если при небольших изменениях начальных условий, вызванных внешними воздействиями, невозмущенное движение будет отличаться от возмущенного движения мало. Данное определение справедливо как для линейных, так и для нелинейных систем.
Свободное движение линейной или линеаризованной системы описывается однородным дифференциальным уравнением где - свободная составляющая выходной величины системы. Система является устойчивой, если свободная составляющая xc(t) переходного процесса с течением времени стремится к нулю, т.е. если . Такая устойчивость называется асимптотической. Если свободная составляющая неограниченно возрастает, т.е. если , то система неустойчива. Наконец, если свободная составляющая не стремится ни к нулю, ни к бесконечности, то система находится на границе устойчивости. Найдем общее условие, при котором система, описываемая уравнением (*), устойчива. Решение уравнения (*) равно сумме где Ck – постоянные, зависящие от начальных условий; pk – корни характеристического уравнения . Корни данного уравнения могут быть действительными (pk=ak), мнимыми (pk=jbk) и комплексными (pk=ak± jbk). Переходная составляющая (**) при t ®¥ стремится к нулю лишь в том случае, если каждое слагаемое вида . Характер этой функции времени зависит от вида корня pk. Рассмотрим все возможные случаи расположения корней pk на комплексной плоскости (см. рис.) и соответствующие им функции xk(t), которые показаны внутри кругов (как на экране осциллографа).
1. Каждому действительному корню pk=ak в решении (**) соответствует слагаемое вида Если ak <0 (корень р1), то функция (***) при t ®¥ стремится к нулю. Если ak >0 (корень р3), то функция (***) неограниченно возрастает. Если ak =0 (корень р2), то функция (***) остается постоянной. 2. Каждой паре сопряженных комплексных корней pk=ak± jbk в решении (**) соответствуют два слагаемых, объединенных в одно Эта функция представляет собой синусоиду с частотой bk и амплитудой, изменяющейся во времени по экспоненте. Если действительная часть двух комплексных корней ak <0 (корни р4 и р5), то колебательная составляющая (****) будет затухать. Если ak >0 (корни р8 и р9), то амплитуда колебаний будет неограниченно возрастать. Наконец, если ak =0 (корни р6 и р7), т.е. если оба сопряженных корня – мнимые (pk=+ jbk, pk+1=- jbk), то xk(t) представляет собой незатухающую синусоиду с частотой bk. Общее условие устойчивости: Для устойчивости линейной автоматической системы управления необходимо и достаточно, чтобы действительные части всех корней характеристического уравнения системы были отрицательны. При этом действительные корни рассматриваются как частный случай комплексных корней, у которых мнимая часть равна нулю. Если хотя бы один корень имеет положительную действительную часть, то система будет неустойчивой. Устойчивость системы зависит только от вида корней характеристического уравнения и не зависит от характера внешних воздействий на систему. Устойчивость есть внутренне свойство системы, присущее ей вне зависимости от внешних условий. Используя геометрическое представление корней на комплексной плоскости (см. рис.) в виде векторов или точек, можно дать вторую формулировку общего условия устойчивости (эквивалентную основной): Для устойчивости линейной системы необходимо и достаточно, чтобы все корни характеристического уравнения находились в левой полуплоскости. Если хотя бы один корень находится в правой полуплоскости, то система будет неустойчивой. Мнимая ось jb является границей устойчивости в плоскости корней. Если характеристическое уравнение имеет одну пару чисто мнимых корней (pk=+jbk, pk+1=-jbk), а все остальные корни находятся в левой полуплоскости, то в системе устанавливаются незатухающие гармонические колебания с круговой частотой . В этом случае говорят, что система находится на колебательной границе устойчивости. Точка b =0 на мнимой оси соответствует так называемому нулевому корню. Если уравнение имеет один нулевой корень, то система находится на апериодической границе устойчивости. Если таких корня два, то система неустойчива.
Дата добавления: 2014-01-05; Просмотров: 716; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |