Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Расстояния. Псевдорешения. Нормальные решения. Нормальные псевдорешения

Расстоянием между множествами X и Y называется .

Рассмотрим задачу нахождения расстояния от точки x до подпространства W. В начале рассмотрим случай, когда подпространство задано в виде линейной оболочки системы векторов.

Теорема 2.5. Расстояние от точки до подпространства достигается на перпендикуляре, опущенном из точки x на подпространство.

Доказательство. Представим . Расстояние от точки x до подпространства W равно . Векторы и ортогональны друг другу, и по неравенству Бесселя , причем равенство достигается только в случае . Тем самым установлено , что и требовалось.

Пусть и система векторов линейно независимая. Расстояние от точки x до подпространства W можно найти как отношение объема k +1-мерного параллелепипеда натянутого на векторы к объему k -мерного параллелепипеда натянутого на векторы . Таким образом, справедлива формула . К сожалению, эта формула не позволяет находить проекцию и ортогональную составляющую вектора. Для нахождения проекции можно поступать следующим образом. Представим и , а затем умножим скалярно на векторы вектор x. Получим систему линейных уравнений . Коэффициенты при неизвестных образуют матрицу Грама, определитель которой не равен нулю. Следовательно, система имеет единственное решение. Решив эту систему, найдем проекцию вектора x, а затем и ортогональную составляющую.

Рассмотрим случай, когда линейное подпространство задано системой однородных линейных уравнений Ax =0. Для простоты проведения рассуждений будем считать, что строки матрицы A линейно независимы. В ортонормированном базисе, коэффициенты при неизвестных в уравнении являются координатами вектора из ортогонального дополнения (см. п.2.4). Таким образом, по системе линейных уравнений можно найти базис ортогонального дополнения к пространству W. Обозначим базис через . Тогда представим и , а затем умножим скалярно на векторы вектор x. Получим систему линейных уравнений . Коэффициенты при неизвестных образуют матрицу Грама, определитель которой не равен нулю. Следовательно, система имеет единственное решение. Решив эту систему, найдем ортогональную составляющую вектора x, а затем и проекцию.

Рассмотрим теперь задачу нахождения расстояния от точки x до линейного многообразия M. Эта задача легко сводится к аналогичной задаче построения расстояния от точки до подпространства. Действительно, пусть M=z + W, где z – произвольная точка из M, а W – подпространство. Тогда , то есть задача свелась к определению расстояния от точки x-z до подпространства W.

Линейное многообразие, заданное как множество решений одного линейного уравнения ax = b называется гиперплоскостью. Рассмотрим задачу отыскания расстояния от точки y до гиперплоскости ax = b. Перпендикуляр, опущенный из y на гиперплоскость равен и . Отсюда находим неизвестный параметр , а затем и расстояние .

Рассмотрим задачу определения расстояния между двумя линейными многообразиями и . Расстояние между ними равно , то есть задача свелась к нахождению расстояния от точки y-z до подпространства . Заметим, что расстояние между линейными многообразиями достигается на общем перпендикуляре.

<== предыдущая лекция | следующая лекция ==>
Геометрический смысл определителя матрицы Грама. Неравенство Адамара | Псевдорешения. Метод наименьших квадратов
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 718; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.