КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Приведение квадратичных форм к главным осям
Приведение квадратичных форм Рассмотрим квадратичную форму . Матрица A является симметричной. Линейное преобразование, заданное матрицей A, является самосопряженным и для этого преобразования существует ортонормированный базис из собственных векторов. Другими словами, найдется ортогональная матрица T (), что , где - собственные числа A. Поскольку , то квадратичная форма ортогональной заменой переходит в форму . Приведение квадратичной формы к каноническому виду ортогональным преобразованием называется приведением к главным осям. Полученный факт оформим в виде теоремы. Теорема 9.1. Квадратичная форма при помощи ортогонального преобразования всегда может быть приведена к канонической форме , де - собственные числа A. Отметим, что для квадратичной формы выполняется закон инерции. Следовательно, используя теорему Якоби, можно определить число положительных и число отрицательных собственных значений. Собственные значения матриц A и A-tE отличаются на t, поэтому, определяя число положительных и отрицательных собственных значений матрицы A-tE, мы, тем самым, определим количество собственных значений матрицы A меньших t. Выбирая различные t можно найти собственные числа с любой точностью.
Дата добавления: 2014-01-05; Просмотров: 422; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |