Абсолютная сходимость несобственных интегралов 1-го рода
Определение 15.2. Несобственный интеграл называют абсолютно сходящимся, если сходится интеграл . Функция f(x) называется при этом абсолютно интегрируемой на [ a,∞).
Признак абсолютной сходимости несобственного интеграла (критерий Коши) – без доказательства.
Для того, чтобы абсолютно сходился, необходимо и достаточно, чтобы для любого ε > 0 существовало такое η, что при η΄ > η, η΄΄ > η .
Теорема 15.2. Если интеграл абсолютно сходится, то он сходится и в обычном смысле.
Доказательство.
Согласно критерию Коши . Следовательно, существует конечный предел при , то есть
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление