Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Двоично-кодированные системы счисления

Пример 1.1.

       
 
а) сложение
 
б) вычитание

 


в) деление
г) умножение

 

 

Пусть р - основание позиционной системы счисления. Поставим во взаимно однозначное соответствие р-ичным цифрам не равные между собой целые двоичные числа. Определив количество разрядов k наибольшего числа из них, уравняем по нему разрядности остальных выбранных двоичных чисел, приписывая к каждому слева необходимое для этого количество нулей. Каждой р-ичной цифре теперь соответствует k-разрядное двоичное число, называемое ее двоичным кодом. Любое р-ичное число можно закодировать, заменяя его р-ичные цифры их двоичными кодами. Получаемая при этом совокупность правил записи чисел называется р-ичной двоично-кодированной системой счисления. Однако, наименьшая возможная разрядность двоичных кодов получится, если k выбрать так, чтобы выполнялось неравенство:

, (1.3)

откуда

, (1.4)

где ]x[ обозначает ближайшее к х большее целое.

Легко сообразить, что количество k-разрядное двоичных чисел, не используемых в качестве кодов р-ичных цифр, равно 2к-р. Эти числа обычно называют “запрещенными комбинациями” (нулей и единиц).

<== предыдущая лекция | следующая лекция ==>
Позиционные системы счисления | Пример 1.2. Десятичная двоично-кодированная система счисления, в которой каждая десятичная цифра заменена четырехразрядным равным ей двоичным числом
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 756; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.