КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Двоичные числа
Представление информации в ЭВМ.
ЭВМ оперирует с данными трёх основных типов: числами, строками символов и логическими значениями.
Основной формой представления числовых значений в ЭВМ являются двоичные числа. Двоичные числа – это значения представленные в двоичной системе счисления. Числовые значения могут быть двух типов: целые и действительные и для их изображения в ЭВМ используют две формы: с фиксированной запятой (точкой) и с плавающей запятой (точкой). Представление числа с фиксированной запятой имеет следующий формат (структуру):
(1.5)
Разряд с номером «n» является знаком числа: знак «+» кодируется цифрой 0, а знак «-» - цифрой 1. Разряды от 0 до n-1 являются цифровыми. Запятая фиксируется в определённом месте относительно разрядов числа. Обычно она находится или перед старшим разрядом или после младшего. Формат числа с фиксированной запятой после младшего разряда служит для изображения целых чисел N. Число разрядов n определяет диапазон значений, которые могут быть представлены в этом формате: NÎ[-(2n-1),+(2n-1)]. Увеличение количества цифровых разрядов n на единицу расширяет диапазон значений в два раза. Выполнение операций над целыми числами, изображаемыми словами фиксированной длины, имеет следующие особенности. Операции сложения и вычитания определены только в том случае, если результат может быть представлен в n цифровых разрядах, т. е. если результат |C|<2n. В противном случае говорят, что результат переполняет размерную сетку ЭВМ. Если |C|³2n в процессоре формируется признак переполнения, используемый для прекращения вычислений. Формат числа с запятой, фиксированной перед старшими разрядом, используется для представления действительных чисел, принадлежащих отрезку [-(1-2-n),+(1-2-n)] и изменяются с шагом 2-n. В отличие от целых, они представляются приближённо с погрешностью D=2-(n+1). Отсюда следует, что количество цифровых разрядов определяет точность представления значений числами с фиксированной запятой. С увеличением n на один дополнительный разряд погрешность D уменьшается в два раза. Выполнение операций над действительными числами в форме с фиксированной запятой имеет следующие особенности. Операции сложения и вычитания определены в том случае, если результат может быть представлен в форме с фиксированной запятой, т.е. если результат |C|<1. В противном случае фиксируется переполнение. Деление А/B возможно, если B¹0 и |A|<|B|. В современных ЭВМ для представления действительных чисел широкое распространение получил другой способ – представление чисел с плавающей запятой. При этом число представляется в виде: Z=±Md±P (1.6) где d – основание чисел с плавающей запятой. P – целое число, называемое порядком числа Z; M – мантисса числа Z. Как видно из (1.6) число представляет собой произведение мантиссы и экспоненты по основанию d, поэтому такое представление называют также экспоненциальным. Обычно d=2r, r=1,2,… В качестве основания d чаще всего используется значение 2 или 16. Мантисса числа с плавающей запятой всегда меньше единицы, и если выполняется условие: , (1.7) то такое число называется нормализованным. В противном случае число называется ненормализованным. Число с плавающей запятой имеет следующий формат:
(1.8)
Разряд m+p+1 слова представляет знак числа, который одновременно является знаком мантиссы. Мантисса М представляется m – разрядным числом с фиксированной запятой. Знак порядка кодируется «m+p» - ым разрядом слова. Порядок Р является целым числом и занимает р разрядов с m по m+p+1. У нормализованных чисел r старших разрядов мантиссы не равны нулю. В ЭВМ знак порядка и порядок представляются одним (р+1) – разрядным целым значением Х, называемым характеристикой числа с плавающей запятой, которая связана с порядком соотношением: X=2P+P, (1.9) С учётом этого порядок определяется по значению характеристики Х следующим образом: P=2P-X, (1.10) где 0£X£2P+1-1 Как следует из (1.9) и (1.10), значение характеристики 0,1,2,…,2P используются для представления порядков –2P,-(2P-1),-(2P-2),…,0 соответственно, а значения характеристики 2P+1, 2P+2,…,2P+(2P-1) – значения для представления порядков 0,1,2,…,2P–1. При этом нулевое значение старшего разряда характеристики соответствует знаку порядку минус, а единичное значение – знаку плюс. Таким образом, характеристика – это дополнительный код порядка с инверсным представлением знака. Использование характеристики несколько упрощает алгоритм операций над числами с плавающей запятой. Учитывая, что и , и , получим, что нормализованные числа с плавающей запятой обеспечивают представление значений в диапазоне (1.11) с предельной относительной погрешностью (1.12) так как 2-m<<1, выражение (1.11) преобразуется к виду , (1.13) или переходя к десятичному основанию, (1.14) За счёт ненормализованных чисел диапазон значений Z расширяется слева на . В этой области значения представляются с предельной относительной погрешностью, лежащий в интервале Из (1.13) и (1.14) видно, что диапазон определяется величиной основания и порядком, а точность представления чисел количеством разрядов мантисс. Увеличение основания d приводит к существенному расширению диапазона значений, а погрешность при этом увеличивается незначительно. По этой причине в ЭВМ общего назначения, к которым принадлежат ЕС ЭВМ, IBM 360/370, использовалось основание 16. Из–за ограниченности числа разрядов мантиссы и порядка при выполнении операций над числами с плавающей запятой могут возникать следующие особые случаи. 1. Потеря значимости имеет место при выполнении операций сложения и вычитания, когда при равных порядках модули мантисс равны с точностью до m старших разрядов. В этом случае выполнение операции приводит к числу с нулевой мантиссой и ненулевым порядком, т.е. к числу без значащих цифр. Полученное значение рассматривается как машинный нуль, который представляется словом с нулевыми значениями во всех разрядах. 2. Исчезновение порядка происходит, когда порядок результата должен иметь значение, меньшее –2P – максимального по модулю отрицательного порядка. В таком случае результат приходиться представлять машинным нулём. 3. Переполнение порядка возникает, когда порядок результата должен иметь значение, превосходящее максимально возможное (2Р-1). Такое значение не может быть представлено в формате (1.8), поэтому результат операции считается неопределённым, что отличается выработкой признака переполнения. 4. Деление на нуль, которое невозможно, что отличается выработкой признака переполнения. В современных ЭВМ используются целые числа и числа с плавающей запятой. Целые числа представляются в формате с фиксированной запятой (1.5), расположенной после младшего разряда. Используется представление целых чисел со знаком и без знака. Для примера рассмотрим представление целых чисел в персональных ЭВМ IBM PC.
Для представления действительных чисел с различной точностью используются несколько форматов чисел с плавающей запятой. В персональных ЭВМ IBM PC используются следующие форматы:
Дата добавления: 2014-01-05; Просмотров: 686; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |