КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Способы группировки первичных данных
Зафиксированные в документах учета сведения об изучаемом объекте (или объектах) представляют тот фактический материал, который нуждается в соответствующей обработке. Обработка начинается с упорядочения или систематизации собранных данных. Процесс систематизации результатов массовых наблюдений, объединения их в относительно однородные группы по некоторому признаку называется группировкой. Группировка - это не просто технический прием, позволяющий представить первичные данные в комплексном виде, но и осмысленное действие, направленное на выявление связи между явлениями. Один и тот же материал дает совершенно противоположные выводы при разных приемах группировки. Нельзя группировать в одну и ту же совокупность неоднородные по составу данные, необдуманно выбирать способ группировки. Группировка должна отвечать требованию задачи и соответствовать содержанию изучаемого явления. Таблицы. Наиболее распространенной формой группировки являются статистические таблицы; они бывают простыми и сложными. К простым относятся, например, четырехпольные таблица, применяемые при альтернативной группировке, когда одна группа переменных противопоставляется другой; например, здоровые - больным, высокие - низким и т.д.
К сложным относятся многопольные таблицы, применяемые при изучении корреляционной зависимости и при выяснении причинно-следственных отношений между варьирующими признаками. Примером корреляционной таблицы служат данные, показывающие наличие положительной зависимости между ростом родителей и ростом их детей. В качестве примера группировки, применяемых при выяснении причинно-следственных отношений между признаками, можно привести следующую зависимость:
Из примеров видно, что статистические таблицы имеют не только иллюстративное, но и аналитическое значение, позволяющее обнаруживать связи между варьирующими признаками. Статистические ряды. Особую форму группировки представляют так называемые статистические ряды. Статистическим называется ряд числовых значений признака расположенных в определенном порядке. В зависимости от того, какие признаки изучаются, статистические ряды делят на атрибутивные, вариационные, ряды динамики и регрессии, а также ряды ранжированнных значений признаков и ряды накопленных частот, являющихся производными вариационных рядов. Примером атрибутивного ряда могут служить данные, показывающие зависимость между содержанием гемоглобина в крови и высотой организации позвоночных животных.
Среди группировок видное место занимают вариационные ряды. На их описании следует остановиться более подробно. Ряды регрессии, динамики и другие мы разберем на следующих лекциях. Вариационным рядом или рядом распределения называют двойной ряд чисел, показывающий, каким образом числовые значения признака связаны с их повторяемостью в данной статистической совокупности. Например, из урожая картофеля, собранного на огороде, случайным образом отобрано 10 клубней, в которых подсчитывали число глазков. Результаты подсчета оказались следующие: 6, 9, 5, 7, 10, 8, 9, 10, 8, 11. Чтобы разобраться в этих данных, расположим их в ряд (в порядке регистрации результатов наблюдений) с учетом повторяемости вариант в совокупности. Варианты xi 6 9 5 7 10 8 11 Число вариант fi 1 2 1 1 2 2 1 Это и есть вариационный ряд. Числа, показывающие, сколько раз отдельные варианты встречаются в данной совокупности называются частотами или весами вариант и обозначаются строчной буквой латинского алфавита f. Общая сумма частот вариационного ряда равна объему данной совокупности. Частоты (веса) выражают не только абсолютными, но и относительными числами - в долях единицы или в процентах от общей численности вариант, составляющих данную совокупность. В таких случаях веса называют относительными частотами или частостями. Распределение исходных данных в вариационный ряд преследует определенные цели. Одна из них ускорение работы при вычислении по вариационному ряду обобщающих числовых характеристик - средней величины и показателей вариации. Другая сводится к выявлению закономерности варьирования учитываемого признака. Приведенный ряд удовлетворяет первой, но не удовлетворяет достижению второй цели. Чтобы ряд распределения полностью удовлетворял предъявляемым к нему требованиям, его нужно строить по ранжированным значениям признака. Под ранжированием понимают расположение членов ряда в возрастающем (или убывающем) порядке. Так, в данном случае результаты наблюдений следует расположить так: Варианты xi 5 6 7 8 9 10 11 Число вариант fi 1 1 1 2 2 2 1 В зависимости от того, как варьирует признак - дискретно или непрерывно, в широком или узком диапазоне, - статистическая совокупность распределяется в безынтервальный или интервальный вариационные ряды. В первом случае частоты относятся непосредственно к ранжированным значениям признака, которые приобретают положение отдельных групп или классов вариационного ряда, во втором - подсчитывают частоты, относящиеся к отдельным промежуткам или интервалам (от - до), на которые разбивается общая вариация признака в пределах от минимальной до максимальной варианты данной совокупности. Эти промежутки могут быть равными и не равными по ширине. Отсюда различают равно- и неравноинтервальные вариационные ряды. Примером неравноинтервального ряда могут служить данные показывающие зависимость между числом стай каких-то птиц и количеством особей в стае в гнездовой и послегнездовой период. В неравноинтервальных рядах характер распределения частот меняется по мере изменения ширины классовых интервалов. Поэтому в качестве числовых характеристик таких рядов используют особые показатели. Неравноинтервальную группировку в биологии применяют сравнительно редко. Как правило данные располагаются в равноинтервальные ряды, что позволяет не только выявить закономерность варьирования, но и облегчает вычисление сводных числовых характеристик вариационного ряда, сопоставление рядов распределения друг с другом. Приступая к построению равноинтервального вариационного ряда, важно правильно наметить ширину классового интервала. Дело в том, что грубая группировка (когда устанавливают очень широкие классовые интервалы) искажает типичные черты варьирования и ведет к снижению точности числовых характеристик. При выборе чрезмерно узких интервалов точность обобщающих числовых характеристик повышается, но ряд получается слишком растянутым и не дает четкой картины варьирования. Для получения хорошо обозримого вариационного ряда и обеспечения достаточной точности вычисляемых по нему числовых характеристик следует разбить вариацию признака (в пределах от минимальной до максимальной варианты) на такое число групп или классов, которое удовлетворяло бы обоим требованиям. Эту задачу решают делением размаха варьирования признака на число групп или классов, намечаемых при построении вариационного ряда: l=(Ximax-Ximin)/k, где l - величина классового интервала; К - число классов, на которые следует разбить вариацию признака. Число классов можно приблизительно наметить, пользуясь таблицей:
Более точно величину К можно определить по формуле Стерджеса: К=1+3.32*lg n. При наличии в совокупности большого числа членов (больше 100) можно использовать формулу К=5*lg n.
Основные характеристики варьирующих объектов. Средние величины.
Для характеристики варьирующих (изменяющихся) объектов служат особые, логически и теоретически обоснованные числовые показатели, называемые статистическими характеристиками. К ним относятся прежде всего средние величины и показатели вариации. В отличие от индивидуальный числовых характеристик средние величины обладают большей устойчивостью, способностью характеризовать целую группу одним (средним) числом. И хотя средние величины абстрактны, они вполне понятны и ощутимы. Средний рост, средняя продуктивность, средний урожай, средняя успеваемость и другие средние - все это понятия абстрактные о конкретном. Значение средних заключается в в их свойстве аккумулировать или уравновешивать все индивидуальные отклонения, в результате чего проявляется то наиболее устойчивое и типичное, что характеризует качественное своеобразие варьирующего объекта, позволяет отличить один групповой объект от другого. В зависимости от того, как распределены исходные данные - в равно- или неравноинтервальный вариационный ряд, для их характеристики применяют разные средние величины. Именно при распределении собранных данных в неравноинтервальный вариационный ряд более подходящей обобщающей характеристикой изучаемого объекта, служит так называемая плотность распределения, т.е. отношение частот или частостей к ширине классовых интервалов. Кроме того, числовыми характеристиками таких рядов могут служить средние из абсолютных или относительных показателей плотности распределения. Средняя плотность показывает, сколько единиц данной совокупности приходится в среднем на интервал, равный единице измерения учитываемого признака. В качестве статистических характеристик равноинтервальных вариационных рядов применяют средние величины. Средняя арифметическая. Этот показатель является центром распределения вокруг которого группируются все варианты статистической совокупности. Средняя арифметическая может быть простой и взвешенной. Простую арифметическую определяют как сумму всех членов совокупности, деленную на их общее число. Когда отдельные варианты повторяются, среднюю арифметическую вычисляют по формуле: 1/n*Sxifi и называют взвешенной средней. Средняя арифметическая обладает рядом важных свойств: 1. Если каждую варианту статистической совокупности уменьшить или увеличить на некоторое произвольно взятое положительное число, то и средняя уменьшится или увеличится на это число. 2. Если каждую варианту разделить или умножить на какое-то одно и то же число, то и средняя арифметическая изменится во столько же раз. 3. Сумма произведений отклонений вариант от их средней арифметической на соответствующие им частоты равна нулю. 4. Сумма квадратов отклонений вариант от их средней меньше суммы квадратов отклонений тех же вариант от любой другой величины. Средняя гармоническая. Эту характеристику в отличие от средней арифметической определяют как сумму обратных значений вариант, деленуюю на их число. Xh=n/S(1/xi) Пример. 5 студентов за 1 час набрали следующее количество жуков: 1 - 10, 2 - 20, 3 - 25, 4 - 30, 5 - 20. Всего 105 штук. Оценим итоги с помощью Х и Хh. X=21 жук. Xh=5/(1/10+1/20+1/25+1/30+1/20)=18.31. Разница весьма заметна. Какая же из средних верна. Попробуем с помощью Х вычислить время, затраченное на 1 жука - 60/21=2.86 мин. Верно ли это? Проверим результат. первый студент затратил 6 мин, 2 - 3, 3 - 2.4, 4 - 2, 5 - 3. В среднем получится 3.38мин. Видно, что средняя арифметическая непригодна для определения среднего времени, затрачиваемого на поимку 1 жука. Из приведенного примера видно, что средняя гармоническая применяется тогда, когда результаты наблюдений обнаруживают обратную зависимость, заданы обратными значениями вариант. Средняя квадратическая. Для более точной числовой характеристики мер площади применяется средняя квадратическая. XQ=S x2/n. Средняя кубическая. В качестве характеристики объемных признаков более точной является средняя кубическая. Xq=Sx3/n. Средняя геометрическая. Этот показатель представляет собой корень n-й степени из произведений членов ряда. Средняя геометрическая - более точная характеристика рядов динамики, чем средняя арифметическая. Однако, они, как правило, незначительно отличаются друг от друга. К тому же вычисление средней арифметической проще. Поэтому вместо средней геометрической в качестве приближенной характеристики темпов динамики нередко используют среднюю арифметическую. При этом приходится учитывать, что средняя геометрическая дает хорошие (не искаженные) результаты лишь при наличии геометрической прогрессии, заложенной в самой динамике явления. Это обстоятельство ограничивает область применения средней геометрической. В заключение обзора средних необходимо отметить, что между ними существуют определенные соотношения, выраженные следующим рядом неравенства. ХQ>Хq>Х>Хg>Хh. Показатели вариации. Средние величины не являются универсальными характеристиками варьирующих объектов. При одинаковых средних признаки могут отличаться по величине и характеру варьирования. Поэтому наряду со средними для характеристики варьирующих объектов используют и показатели вариации. Одним из таких показателей являются лимиты (пределы). В биометрии под этим термином понимают значения минимальной и максимальной вариант совокупности. Размах вариации. Это показатель представляющий собой разность максимальной и минимальной вариант совокупности. Чем сильнее варьирует признак, тем больше размах вариации и наоборот. Лимиты и размах вариации - простые и наглядные характеристики варьирования, однако им присущи существенные недостатки: при повторных измерениях одного и того же группового объекта они могут существенно изменяться; кроме того, они не отображают существенные черты варьирования. Более удобной характеристикой вариации мог бы служить показатель который строится на основании отклонений вариант от их средней. Сумма таких отклонений, взятая без учета знаков и отнесенная к числу наблюдений называется средним линейным отклонением. Дисперсия и ее свойства. Несмотря на явное преимущество среднего линейного отклонения перед лимитами и размахом вариации, этот показатель не получил широкого распространения на практике. Наиболее подходящим оказался показатель, построенный не на отклонениях вариант от их средних, а на квадратах этих отклонений, его называют дисперсией (рассеяние) и выражают формулой S2=S(Xi-X)2/n Ценность дисперсии заключается в том, что, являясь мерой варьирования числовых значений признака вокруг их средней арифметической, она измеряет и внутреннюю изменчивость значений признака, зависящую от разностей между наблюдениями. Преимущество дисперсии перед другими показателями вариации состоит также в том, что она разлагается на составные компоненты, позволяя тем самым оценивать влияние различных факторов на величину учитываемого признака. Вместе с тем установлено, что расчитываемая по формуле дисперсия оказывается смещенной по отношению к своему генеральному параметру на величину, равную n/n-1. Чтобы получить несмещенную дисперсию, нужно в формулу ввести в качестве множителя поправку на смещенность, называемую поправкой Бесселя. В результате S2=S(Xi-X)2/(n-1) Разность n-1, называют числом степеней свободы, под которым понимают число свободно варьирующих единиц в составе численно ограниченной статистической совокупности. Дисперсия обладает рядом важных свойств, из которых необходимо выделить следующие. 1. Если каждую варианту совокупности уменьшить или увеличить на одно и то же постоянное число, то дисперсия не изменится. 2. Если каждую варианту совокупности умножить или разделить на одно и то же постоянное число А, то дисперсия уменьшится или увеличится в А2 раз. Среднее квадратичное отклонение. Наряду с дисперсией важнейшей характеристикой варьирования является среднее квадратичное отклонение - показатель, представляющий корень квадратный из дисперсии.
Эта величина в ряде случаев оказывается более удобной характеристикой варьирования чем дисперсия, так как выражается в тех же единицах, что и средняя арифметическая.
Дата добавления: 2014-01-05; Просмотров: 2977; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |