КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Основная предпосылка эконометрического анализа
Суть основной предпосылки построения эффективной эконометрической модели состоит в возможности разбиения Y на две части: объясненную и случайную . (1.1)
Объясненная часть случайной величины , формируется вариацией вектора независимых переменных ; E – случайная составляющая (остаток). Если случайная величина Y непрерывна, то объясненная часть представляет собой некоторую неизвестную непрерывную функцию от регрессоров : (1.2)
Естественной аппроксимацией (описанием) случайной функции является оценка:
(1.3)
М[Х½х1, х2,… хn, ] - среднее значение случайной функции , т.е. условное математическое ожидание, полученное при условии, что вектор независимых переменных принял конкретное (фиксированное) значение:
Здесь и далее большими буквами X, Y будет обозначаться текущее значение случайных величин, а малыми буквами, x, y их конкретные (количественные) реализации. В некоторых книгах используют более компактное обозначение:
(1.4) Тогда основную предпосылку построения эконометрической модели можно записать так: Y = Мх(Y) + E. (1.5) Уравнение:
Ye = Мх(Y) = j (х1, х2, …,х j,…, хn). (1.6)
называется уравнением регрессии. Заметим, что вид истинной функции в уравнении (1.6) нам пока неизвестен. Замечание: Эконометрическая модель (1.6) не всегда является регрессионной, т.е. объясненная часть случайной величины не всегда равна своему условному математическому ожиданию:
Ye ¹ Мх(Y).
Пример: Пусть независимые переменные измерены с систематическими ошибками. Тогда неизвестная нам случайная функция в наблюдениях будет деформирована (искажена). В эконометрике это встречается часто. Существуют специальные методы борьбы с этим неприятным обстоятельством, которые будут рассмотрены ниже. Критерием того, что модель (1.6) является регрессионной является условие Мх(E) = 0. Действительно, записав основную предпосылку эконометрического анализа (1.5), Вычислим математическое ожидание от обеих частей уравнения:
Мх(Y) = Мх [Мх(Y)] + Мх(E);Þ
Þ Мх(E) = 0 (1.6)
Условие (1.6) является наиболее существенным условием получения качественной модели. Статистически это условие означает отсутствие систематического смещения наблюдений , относительно линии (или поверхности в многомерном случае) регрессии.
Дата добавления: 2014-01-05; Просмотров: 352; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |