Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

ИППН с последовательной коммутацией




 

Коммутирующий конденсатор расположен в диагонали моста, образованного из четырех коммутирующих тиристоров VS1-VS4. Для коммутации силового тиристора VSс отпирают по 2 коммутирующих накрест лежащих тиристора VS1 и VS2, VS3 и VS4. При полярности Ск без скобок для запирания VSс отпирают VS1 и VS2, при полярности в скобках VS3 и VS4. Такая последовательность отпирания тиристоров позволят исключить подготовительные перезаряды Ск. В контур коммутации входит источник питания Е, дроссель Lк, конденсатор Ск и открытые тиристоры VS1 и VS2 либо VS3 и VS4.

Рассмотрим фазовый портрет перезаряда конденсатора. Пуск схемы производится отпиранием одной пары коммутирующих тиристоров, например VS3 и VS4 при запертом VSс. В контуре Е - Lк - VS4 - Ск - VS3 происходит заряд конденсатора от источника питания Е – участок 0-1 (рисунок 4.15). Без учета потерь энергии в цепи заряда, конденсатор зарядится до напряжения (-2Е) с полярностью без скобок. Затем последовательность импульсов, поступающих от системы управления, подчиняется режиму работы преобразователя при регулировании выходного напряжения. Вначале отпирается VSс и протекает ток в нагрузке. Затем, спустя необходимое время длительности импульса tи отпирают тиристоры VS1 и VS2, создающие аналогичный контур перезаряда конденсатора Е - Lк – VS2 - Ск – VS1 с тем отличием, что перед их отпиранием ток дросселя равен I(0), а конденсатор заряжен до напряжения 2Е полярностью, встречной напряжению питания. Кроме того при отпирании VS1 и VS2, конденсатор Ск подключается через VD0 к тиристору VSс, обратной для него полярностью. Ток через VSс быстро спадает до нуля и к нему прикладывается запирающее напряжение. Ток нагрузки замыкается через обратный диод VD0. Запертый тиристор VSс отделяет коммутационный узел от нагрузки. Ток дросселя Lк переходит из цепи тиристора в цепь конденсатора. Этим вызван тот факт, что при перезаряде начальный ток конденсатора равен I(0). Начальные условия перезаряда на фазовой плоскости характеризуются т.2.

Перезаряд Ск происходит при наличии в контуре источника питания Е и поэтому описывается на фазовой плоскости дугой окружности 2-3 с центром в т.(+Е;0). В т.3 ток iс=0 конденсатор заряжен полярностью в скобках. К тиристорам VS1 и VS2 прикладывается обратное напряжение и они запираются. Очередной процесс коммутации при отпирании VS3 и VS4 – участок 3-4-5, а так же последующие процессы протекают аналогично.

Т.о. напряжение на конденсаторе при каждом такте его перезаряда повышается и без учета потерь энергии фазовая траектория имеет вид раскручивающейся спирали, причем эффект последовательного накопления энергии в конденсаторе проявляется здесь намного сильнее, чем в предыдущих схемах. Это связано с поступлением энергии в конденсатор в процессе его перезаряда от источника питания и с передачей в конденсатор энергии, накопленной в дросселе перед коммутацией. Установившемуся режиму, который характеризуется равенством энергии, получаемой и теряемой в коммутационном узле, соответствует напряжение на конденсаторе. Поэтому рассмотренная схема без дополнительных мер по отводу избыточной энергии от коммутационного узла на практике не приемлема.

Задачу решают введением в схему цепи сброса, показанной пунктиром и состоящей из дополнительной обмотки дросселя Wс и диода VDс. Число витков обмотки сброса Wс больше числа витков основной обмотки. Рассмотрим временные диаграммы, поясняющие принцип действия цепи сброса (рисунок 4.16). В момент t1 открываются коммутирующие тиристоры, например, VS1 и VS2 и начинается перезаряд конденсатора. Как мы уже выяснили ток конденсатора iс будет нарастать не от нуля, а от величины I(0). Если бы в схеме отсутствовала цепь сброса, то после времени t3 напряжению Uс и току iс соответствовали кривые, показанные пунктиром.

Полярность на обмотках Lк для интервала t1 – t2 показана в скобках. Диод VDс закрыт и на этом интервале цепь сброса не оказывает влияния на процесс перезаряда Ск. Напряжение на обмотке Wс в n-раз превышает напряжение UL0 основной обмотки W0 и к диоду VDс приложено обратное напряжение. В момент t2 полярность напряжения на обмотках меняется, что характеризует отдачу энергии, накопленной в дросселе Lк в конденсатор Ск. В момент t3 напряжение на Wс равно Е и противоположно по знаку. Диод VDс открывается. На обмотке W0 при этом напряжение. С отпиранием VDс создается цепь отдачи энергии дросселя в цепь источника питания и поступление энергии в конденсатор прекращается. Без учета активного сопротивления и индуктивности дросселя такой переход можно считать достаточно быстрым. На этапе отдачи энергии в цепь источника питания напряжение на его обмотках не меняется.,. Процесс сброса энергии заканчивается при токе iсбр= 0 в момент времени t5. Uс достигнув в момент t3 значения остается далее неизменным. Аналогично влияние цепи сброса на последующие процессы перезаряда Ск. Напряжение обоих полярностей фиксируется на уровне. На практике за счет активных сопротивлений и индуктивностей рассеяния в обмотках дросселя Uс получается несколько выше.

На фазовой плоскости процесс перезаряда будет выглядеть следующим образом (рисунок 4. 17). Изменение напряжения на конденсаторе ограничено с обеих сторон значением U0, поэтому кривая, характеризующая установившийся режим симметрична относительно оси абсцисс. Участки 1-2, 4-5, 7-2 отражают прекращение роста напряжения на конденсаторе при вступлении в работу цепи сброса. Увеличение коэффициента трансформации n дросселя позволяет уменьшить U(0) и напряжение на тиристорах, однако, при этом возрастает обратное напряжении на диоде VDс. Как правило n=1,5-3, что соответствует и обратному напряжению на VDс (5-8)Е.

Схемы ИППН с последовательной коммутацией находят меньшее применение на практике, чем схемы с параллельной коммутацией. Это обуславливается более сильным проявлением эффекта последовательного накопления энергии и необходимостью введения для его устранения специальных цепей отвода избыточной энергии от коммутационных узлов, усложняющих схему преобразователя. Кроме того, ИППН с последовательной коммутацией требуют обычно применения большего числа вспомогательных тиристоров.

 




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 340; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.