Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Уравнение энергии в механической форме в относительном движении




Рассмотрим установившееся стационарное течение рабочего тела через рабочее колесо произвольной лопаточной машины. Рабочее колесо вращается с постоянной угловой скоростью w. В потоке вблизи поверхности пера лопатки выделим произвольную бесконечно малую частицу А, движущуюся со скоростью в системе координат вращающейся вместе с РК с угловой скоростью w. В указанной СК точка движется по траектории Sw. Вектор скорости направлен по касательной к линии тока Sw в рассматриваемой точке.

В рассматриваемой точке введем локальную систему координат Aswnwlw, ось Asw которой направлена по касательной к линии тока в точке А, ось Anw нормаль к траектории движения частицы Sw, а ось Alw перпендикулярна первым двум (рисунок 2.14).

Вокруг рассматриваемой точки выделим бесконечно малый объем, имеющий форму параллелепипеда, ориентированный вдоль осей локальной СК, со сторонами размерами dsw, dnw, dlw и центром в начале координат (рисунок 2.15). Масса выделенного объема составляет:

    2.3.12

 

Рисунок 2.14 – Рассматриваемая частица рабочего тела

Поскольку выделенный объем рассматривается в подвижной СК, то согласно принципу Даламбера, при составлении уравнения равновесия для получения уравновешенной системы к активным силам, действующим на объем. необходимо прибавить силы инерции.

На выделенный объем действуют следующие силы (рисунок 2.15):

– сила, с которой лопатка действует на частицу, направленная перпендикулярно траектории движения (^ );

– сила давления, с которой среда воздействует на частицу;

– сила трения, направленная по касательной к линии тока.

 

Рисунок 2.15 – Схема сил, действующих на выделенный объем в подвижном РК

Перечисленные силы являются активными. Кроме того на выделенный объем действуют две инерционных силы: центробежная и сила Кариолиса.

Центробежная сила, направлена вдоль радиуса от центра к периферии. Ее величина может быть найдена по формуле:

    2.3.13

где r – расстояние от оси вращения до центра масс рассматриваемой частицы.

Сила Кариолиса перпендикулярная вектору относительной скорости () и вектору угловой скорости (). Ее величина может быть найдена по следующей формуле:

    2.3.14

В относительной СК выделенный объем движется ускоренно под действием указанных выше сил. Данное обстоятельство позволяет записать для рассматриваемого случая уравнение второго закона Ньютона:

    2.3.15

Рассмотрим чему равны проекции перечисленных сил на ось Asw локальной СК:

- вектор перпендикулярен вектору скорости, который лежит на оси Asw. По этой причине проекция;

- сила трения направлена вдоль касательной к линии тока в сторону противоположную движению, поэтому;

- сила Кориолиса по определению направлена перпендикулярно направлению вектора скорости и по этой причине ее проекция на ось Asw также равна нулю;

- проекция сил давления на ось osw является разностью сил давления, действующих на поверхности выделенного объема перпендикулярные указанной оси. Такими поверхностями являются грани со сторонами и (рисунок 2.15). На поверхность находящуюся ниже по потоку действует сила, а на поверхность выше по течению –. Следует обратить внимание на то, что эти силы действуют в противоположных направлениях, поэтому проекция сил давления на ось Asw, действующая на выделенный объем, равна:

 

Проекция центробежной силы на ось Asw будет равна:

 

где - угол между осью osw и радиальным направлением (рисунок 2.16). Определим чему он равен. За бесконечно малое время dt частица переместится в направлении Asw на проекция этого перемещения на ось r равна dr. Из прямоугольного треугольника (рисунок 2.16) очевидно, что

 

Учитывая сказанное выше, спроецируем уравнение 2.3.15 на ось Asw и получим:

    2.3.16

 

Рисунок 2.16 – К определению угла

Поделив обе части уравнения на и умножив их на придем к следующему выражению:

    2.3.17

Принимая во внимание, что произведение силы на перемещение представляют собой работу, то слагаемым уравнения 2.3.17 можно придать следующий физический смысл:

- удельная работа, затраченная на преодоление сил трения;

– работа по изменению давления (т.е. работа по расширению или сжатию);

- удельная работа инерционных сил;

- изменение удельной кинетической энергии потока в относительном движении.

Учитывая это, уравнение 2.3.17 примет вид:

    2.3.18

Интегрируя последнее уравнение на конечном участке от входной границы «1» до выхода из ЛВ «2» окончательно получаем:

    2.3.19

Это уравнение называется уравнением сохранения энергии в механической форме в относительном движении. Его используют только применительно к потоку в рабочих колесах.

Следствие №1: Запишем уравнение сохранения энергии в механической форме в относительном движении применительно к РК компрессора:

    2.3.20к

Из этого уравнения следует, что изменение потенциальной энергии сил давления (другими словами повышение давления) происходит за счет двух основных составляющих: движения рабочего тела в поле действия инерционных сил и торможения потока в относительном движении, вопреки гидравлическому сопротивлению.

Основываясь на сделанном выводе, сравним рабочий процесс в РК центробежного и осевого компрессоров (рисунок 2.17)

Центробежный Осевой
   
   
   

Рисунок 2.17 – Сравнение осевого и центробежного компрессоров

В центробежном компрессоре рабочее тело входит в РК на радиусе, а выходит на радиусе, который существенно больше первого. Данное обстоятельство говорит том, что окружная скорость на выходе РК существенно больше, чем на ее входе и, следовательно, действие инерционных сил в РК является существенным фактором, повышающим давление в ЦБК. В осевом компрессоре рабочее тело входит в РК и покидает его на близких радиусах, что обуславливает примерное равенство окружных скоростей. В результате действие инерционных сил в таком компрессоре оказывается незначительным.

Таким образом, повышение давления в РК ЦБК происходит за счет торможения потока в относительном движении и за счет действия инерционных сил. В то же время в РК осевого компрессора давление растет только за счет торможения потока в относительном движении. По этой причине степень сжатия осевого компрессора меньше степени повышения давления ЦБК.

Следствие №2: Запишем уравнение сохранения энергии в механической форме в относительном движении применительно к турбине:

    2.3.20т

Из этого уравнения следует, что работа расширения газа в РК турбины идет на преодоление инерционных сил, ускорение потока в относительном движении и на преодоление гидравлического сопротивления.

Следствие №3: Подставляя уравнение 2.3.20к и 2.3.20т в 2.3.6 можно получить еще одно важное соотношение для механической работы:

    2.3.21к

То есть подводимая работа в РК компрессора тратится на изменение кинетической энергии потока как в РК и НА.

    2.3.21т

Удельная теоретическая работа, совершаемая газом на лопатках РК турбины, получается за счет изменения кинетической энергии в СА и РК.

Сравнивая уравнения 2.3.21к и 2.3.21т видно, что эти уравнения одинаковы и отличаются только знаками (которые диаметрально противоположны). Отсюда можно сделать вывод, что компрессор и турбина являются обращенными машинами. Это означает, что их рабочий процесс аналогичен, но обращен.




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 370; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.