Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Погрешности измерения. Правила записи результатов измерений

Читайте также:
  1. I. Правила инвестирования
  2. IV. Стадия использования результатов исследования
  3. Анализ по Парето основан на часто встречающемся явлении, когда относительно немногие причины объясняют большинство результатов.
  4. Анализ уровня и динамики финансовых результатов
  5. Анализ финансовых результатов от реализации продукции и услуг
  6. Анализ формирования финансовых результатов предприятия.
  7. Базовые правила принятия инвестиционных решений
  8. БД, основанные на правилах.
  9. Бухгалтерская экспертиза финансовых результатов
  10. Бухгалтерские записи по поступлению денежных средств на расчетный счет
  11. В случаях, предусмотренных правилами клиринга, клиринговая организация вправе формировать один или несколько клиринговых пулов.
  12. В состав системы кроме средства измерений СИ входит набор мер М1,…,Мn, коммутатор К, вычислительное устройство ВУ.

Измерение электрических параметров. Оценка погрешностей измерений

Общее измерительное оборудование предприятий сервиса

 

Измерение – нахождение значения физической величины экспериментальным путем с помощью специальных технических средств.

Электрическими измерениями называются измерения электрических величин: напряжения U, тока I, мощности P, частоты f и фазы φ переменного тока, заряда q, электрической энергии W, сопротивления R, индуктивности L, электрической ёмкости C, импеданса Z и др.

По способу получения результата измерения бывают прямые, косвенные и совокупные (соединение двух первых). Прямые измерения – измерения непосредственно той физической величины, которая нас интересует. Косвенные измерения – определение интересующей нас величины по прямым измерениям других величин, связанных с искомой известными функциональными зависимостями.

По методам измерения делятся на два основных класса – метод непосредственной оценки и метод сравнения.

Метод непосредственной оценки – получение значения всей измеряемой величины по показаниям прибора, шкала которого отградуирована в единицах измерения данной величины. Вторичные эталонные меры единиц при этом применяются не непосредственно для измерения интересующей нас величины, а лишь в процессе градуировки самих измерительных приборов.

Пример метода непосредственной оценки: измерение температуры с помощью термопары, подсоединенной к стрелочному прибору, шкала которого отградуирована в значениях температуры. Методы непосредственной оценки – самые быстрые и «массовые», но точность и надежность полученных результатов зависят от ряда привходящих факторов.

Метод сравнения основан на сравнении измеряемой величины с эталонной величиной той же самой физической природы, причем, как правило, оценивается лишь часть измеряемой величины. К методам сравнения относятся:

– дифференциальные методы (измеряется разность между измеряемой величиной и образцовой мерой);

– нулевые методы (разность дифференциального метода сводится к нулю);

– методы замещения (измеряемую величину заменяют в установке образцовой мерой и добиваются того же результата показаний приборов установки).

 

 

1. Погрешности измерения. Любое экспериментальное измерение физической величины может быть произведено не «абсолютно точно», а лишь с точностью до гарантированной данным экспериментом величины погрешности.

2. Истинное значение измеряемой величины. Чаще всего в качестве истинного значения в измерениях выступает:

– либо теоретически введенная идеальная величина;

– либо справочное значение величины, определенное более точными экспериментальными средствами, чем данный эксперимент;



– либо среднее значение, вычисленное в данном эксперименте.

3. Типы (классы) погрешностей.

По «происхождению» и характеру проявления погрешности делятся на промахи, систематические и случайные.

Промахи (по другой терминологии – недостоверные измерения) совершаются чаще всего из-за неопытности экспериментатора и их нельзя учесть каким-то научно определенным способом. К счастью, промахи обычно резко выпадают из «правильных» значений измерений и поэтому сравнительно легко исключаются.

Систематические погрешности проистекают в общем случае из трех источников: 1) погрешности измерительных приборов ( приборные погрешности); 2) систематические погрешности методики измерения; 3) неполное знание о природе самой измеряемой величины.

Случайные погрешности – погрешности, обусловленные случайным изменением самой измеряемой величины, условий измерения (среды измерения) или случайными воздействиями на измерительные приборы.

По форме отображения погрешности делят на абсолютные и относительные.

Абсолютная погрешность ∆Х выражается разностью между измеренным Х' и истинным Х значением величины и вносится в результат измерения в тех же единицах, что и сама величина:

∆Х = Х' – Х,

Например: Запись результата измерения в данной точке: ∆I = 14,5 – 13,6 = 0,9 мА.

 

Относительная погрешность – отношение абсолютной погрешности к истинному значению:

δХ = ∆Х/Х.

Пример: δI = 0,9/13,6 = 0,066.

Относительную погрешность более удобно выражать в процентах (процентная погрешность):

δХ % = (∆Х/Х)·100 %.

Пример: δI = 6,6 %.

 

Определение приборной погрешности производится по классу точности использованных приборов.

 

Поскольку относительная погрешность электроизмерительного прибора - переменная величина, она не может применяться в качестве характеристики точности прибора. Для характеристики точности стрелочных приборов вводят приведенную погрешность.

Приведенная погрешность Епр – отношение максимальной абсолютной погрешности измерения к пределу измерения Хmах, выраженное в процентах:

G = (∆Хmax/Хmax)·100.

Например, если абсолютная погрешность амперметра ∆X = 0,1 А, а предел измерения этого амперметра Хmах = 10 А, то Епр = (0,1/10)*100% = 1%.

По величине приведенной погрешности все электроизмерительные приборы относят к определённому классу точности. Существует восемь классов точности электроизмерительных приборов: 0,05; 0,1; 0,2; 0,5; 1; 1,5; 2,5; 4. Показатель класса точности определяет приведенную погрешность прибора в процентах.

Так, амперметр класса точности 1,5 с пределом измерения 5 А имеет в любом месте шкалы абсолютную погрешность ∆X = 0,015*5 = 0,075 А.

Класс точности прибора указывается на шкале. Приборы без указания класса точности имеют точность ниже 4% и называются индикаторными, а не измерительными.

 

<== предыдущая лекция | следующая лекция ==>
| Погрешности измерения. Правила записи результатов измерений

Дата добавления: 2014-01-05; Просмотров: 463; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:



studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ip: 54.80.236.48
Генерация страницы за: 0.006 сек.