Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Недостаток

Принцип действия

Вследствие того, что тела нагреты неравномерно (например, температура автомобиля с работающим двигателем будет выше температуры автомобиля с двигателем выключенным), складывается некая картина распределения ИК-излучения.

Действие всех тепловизионных систем основано на фиксировании температурной разницы объект/фон и на преобразовании полученной информации в изображение, видимое глазом. Современные тепловизионные приборы способны обнаруживать температурный контраст, равный 0,05-0,1 К.

В то время как оптические приборы ночного видения, работающих на основе электронно-оптических преобразователей (ЭОП), улавливают излучение с длиной волны ~ 1-2 мкм, что лишь немногим выше чувствительности человеческого глаза, основные рабочие диапазоны тепловизионной аппаратуры охватывают следующие области длин волн: 8-14 мкм – область далекого ИК-излучения и 3-5,5 мкм – среднего ИК. Именно в этих областях приземные слои атмосферы прозрачны для ИК-излучения, а излучательная способность наблюдаемых объектов с температурой от -50 до +500С максимальна.

Таким образом, тепловизионные приборы способны обеспечивать большую дальность видения в любое время суток, через любую прозрачную для ИК-изучения маскировку и даже при несколько пониженной прозрачности атмосферы: при тумане, дожде, снегопаде, пыли и дыме. (Следует оговориться, что пары воды и углекислый газ весьма интенсивно поглощают волны ИК-спектра, и это заметно отражается на чувствительности приборов.)

Фоточувствительным элементом современного тепловизионного прибора является фокально-плоскостная двумерная многоэлементная матрица фотоприемников (FPA), изготовленная на основе полупроводников – примесных кремния и германия.

Поскольку в современных тепловизорах отсутствуют оптико-механические сканирующие устройства, они отличаются компактностью, малой энергоемкостью, высоким отношением сигнал/шум и хорошим качеством изображения.

Основным и главным недостатком тепловизора является большая цена. 90% стоимости прибора составляет его основные элементы: матрица и объектив.

· Матрицы весьма сложны в производстве, и, соответственно, это все упирается в большие деньги.

· С объективами ситуация сложнее: их нельзя сделать из стекла, потому что этот материал не пропускает ИК-излучение. По этой причине для создания объективов применяются редкие и дорогие материалы.

Для понижения шумов и, следовательно, повышения пороговой чувствительности, в тепловизионных приборах матрицу фоточувствительных элементов охлаждает микрокомпрессорная система, либо используется термостабилизация при помощи термоэлектрической системы.

В последнее время все большее распространение получают приборы с неохлаждаемой микроболометрической матрицей.

Применение

Современные тепловизоры нашли широкое применение как на крупных промышленных предприятиях, где необходим тщательный контроль за тепловым состоянием объектов, так и в небольших организациях, занимающихся поиском неисправностей сетей различного назначения. Так, сканирование тепловизором может безошибочно показать место отхода контактов в системах электропроводки.

Особенно широкое применение тепловизоры получили в строительстве при оценке теплоизоляционных свойств конструкций. Так, к примеру, с помощью тепловизора можно определить области наибольших теплопотерь в строящемся доме и сделать вывод о качестве применяемых строительных материалов и утеплителей.

Широкое применение тепловизоры получили в военной индустрии для координации боевых действий в темное время суток. Эта дорогостоящая аппаратура может устанавливаться на самолеты-разведчики, для оценки количества живой силы противника и ее расположения на участке боевых действий

Помимо инженерного применения с 2008-2009 гг. тепловизоры начали также активно использовать в медицинских целях - для выделения из толпы лиц инфицированных вирусом гриппа

Классификация тепловизоров и получение ими изображения

Тепловизионные приборы предназначены для наблюдения объектов по их собственному излучению. Принцип действия приборов этого типа основан на преобразовании излучения инфракрасного (ИК) диапазона в видимый диапазон длин волн излучения. Спектральный диапазон, в котором работают тепловизоры, определяется интервалами длин волн в области максимума энергии излучения наблюдаемых объектов в соответствующих окнах прозрачности атмосферы. Обычно это интервалы длин волн от 3,5 до 5,5 мкм или от 8 до 13,5 мкм. Современные тепловизоры позволяют обнаруживать объекты, имеющие температурные контрасты до десятых и даже сотых долей градусов, формируют изображение в телевизионном или близком к телевизионному стандартах и находят, в связи с этим широкое применение в промышленности, медицине и военном деле.

Первым тепловизионным прибором, появившимся в конце 20-х годов, был эвапорограф, принцип действия которого основан на визуализации фазового рельефа масляной пленки, образующейся на поверхности мембраны при проекции на противоположную сторону этой мембраны теплового изображения. Эвапорогафы имели низкую пороговую чувствительность, большую инерционностью и давали изображение с очень малым контрастом.

В 40-е годы наметились две тенденции в развитии тепловизионных приборов. К первой группе приборов относятся тепловизоры, в которых для преобразования оптического сигнала ИК-диапазона в электрический сигнал используется принцип оптико-механического сканирования (ОМС), а ко второй группе приборов – тепловизоры с электронным сканированием. В тепловизорах первого типа используются одноэлементные или многоэлементные ИК приемники излучения (ПИ) мгновенного действия, а в тепловизорах второго типа в качестве ПИ используются ИК видиконы, пириконы, а сейчас уже и матричные приемники излучения, так называемые фокальные матрицы, работающие в режиме накопления зарядов и основанные на различных физических принципах.

Большинство используемых в настоящее время тепловизионных приборов построены по первому принципу, но в связи с успехами в технологии производства матричных приемников излучения появились приборы без оптико-механического сканирования, которые не только не уступают, но даже превосходят приборы первого типа по потребительским свойствам [1,2,3].

На рис.1.1 представлена обобщенная функциональная схема тепловизора с фокальной ИК матрицей.

Рис. 1.1 Обобщенная функциональная схема тепловизора с фокальной матрицей: 1 – оптическая система; 2 – фокальная матрица с предусилителями; 3 – мультиплексор; 4 – система охлаждения; 5 – корректор неоднородности характеристик чувствительных элементов; 6 – аналого-цифровой преобразователь; 7 – цифровой корректор неоднородности; 8 – корректор неработающих ячеек; 9 – формирователь изображения; 10 – дисплей; 11 – цифровой выход.

Фокальные ИК матрицы могут иметь размерность 128х128, 256х256 и даже 512х512 элементов при размере этих чувствительных элементов 30х30 мкм2. Фокальные матрицы изготавливаются как функционально законченные фотоприемные устройства (ФПУ), включающие систему охлаждения, предусилители, мультиплексор, корректор неоднородности характеристик чувствительных элементов, аналого-цифровой преобразователь, блоки цифровой обработки и формирователь выходных сигналов. Сигналы с выхода такого ФПУ могут передаваться на видеоконтрольное устройство (ВКУ) телевизионного типа либо в цифровом виде в блоки цифровой обработки.

На рис.1.2 представлена обобщенная функциональная схема тепловизора с системой (ОМС).

Рис. 1.2 Обобщенная функциональная схема сканирующего тепловизора: 1 – оптическая система; 2 – блок оптико-механического сканирования; 3 – приемник излучения; 4 – система охлаждения; 5 – электронный тракт; 6 – видеоконтрольное устройство; 7 – система синхронизации.

Система ОМС, в общем случае, должна обеспечивать обзор пространства предметов – сканирование, как в направлении строк (по горизонту), так и по кадру (в вертикальном направлении), что иллюстрируется рис.1.3.

Существует множество схем сканирующих тепловизоров, различающихся методами сканирования, обработки сигналов и представления выходного изображения. Эти различия, во многом, обусловлены топологией ПИ, используемых в тех или иных приборах. В частности, в тепловизорах с системами ОМС могут использоваться одноэлементные, а также многоэлементные ПИ в виде линеек или матриц (см.рис.1.4). Кроме этого, в качестве видеоконтрольного устройства, помимо широко применяемых ТВ-мониторов, используются различного рода устройства с линейками светодиодов и оптико-механическими системами развертки.

Рис. 1.3 Функциональная схема тепловизора со сканированием по строкам и кадру: 1 – объектив; 2 и 3 – сканирующие зеркала; 4 – приемник излучения; 5 электронный тракт; 6 – видеоконтрольное устройство.

Рис. 1.4 Методы сканирования: а) – сканирование одноэлементным ПИ; б) – последовательное сканирование линейкой чувствительных элементов; в) – параллельное сканирование линейкой чувствительных элементов; г) параллельно- последовательное сканирование матричным ПИ.

Различают следующие методы сканирования пространства предметов и развертки при формировании выходного изображения: последовательное, параллельное и параллельно-последовательное. При последовательном сканировании или развертке осуществляется изменение направления визирной оси и преобразование сигнала поочередно вдоль каждой из строк изображения с последующим переходом на каждую следующую строку. Такое сканирование или развертка могут осуществляется при использовании одноэлементных ПИ или СД, а также ПИ или СД в виде линеек, элементы которых ориентированы вдоль строки.

При параллельном сканировании или развертке площадки ПИ или СД, выполненные в виде линейки, ориентированы перпендикулярно направлению движения визирной оси. При параллельно-последовательном сканировании или развертке используются ПИ и СД в виде линеек или матриц, а обзор поля производится последовательно по зонам.

В соответствии с наиболее целесообразными сочетаниями типов сканирования, обработки сигналов и развертки тепловизионные приборы с системами ОМС строят на основе следующих 4-х основных принципов:

– параллельное сканирование, параллельная обработка видеосигналов и параллельная развертка (рис.1.5);

 

Рис. 1.5 Тепловизор с параллельным сканированием и параллельной разверткой изображения: 1 – объектив; 2 – сканирующее зеркало; 3 – линейка светодиодов; 4 – линейка ПИ; 5 – окуляр.

– параллельное сканирование, параллельная обработка сигналов с последующим их преобразованием (мультиплексированием) для вывода изображения на ТВ-монитор (рис.1.6);

Рис. 1.6 Тепловизор с параллельным сканированием и параллельной обработкой сигналов с последующим мультиплексированием для вывода изображения на ТВ монитор: 1 – объектив; 2 – сканирующее зеркало; 3 – линейка ПИ; 4 – линейка светодиодов; 5 – проекционный объектив; 6 – передающая телевизионная трубка (матрица ПЗС); 7 – ТВ монитор.

 

– параллельно-последовательное сканирование и развертка с параллельной обработкой сигналов (рис.1.7);

Рис. 1.7 Тепловизор с параллельно-последовательным сканированием, параллельной обработкой сигналов и параллельно-последовательной разверткой изображения: 1 – объектив; 2 – сканирующее зеркало; 3 – матрица светодиодов; 4 – матрица ПИ; 5 – окуляр.

- последовательная обработка сигналов с преобразованием сигнала для вывода на ТВ-монитор (рис.1.8).

Рис. 1.8 Тепловизор с последовательным сканированием линейкой ПИ и преобразованием сигналов для вывода изображения на ТВ монитор: 1 – объектив; 2 и 3 – сканирующие зеркала; 4 – линейка ПИ; 5 – линии задержки с сумматором; 6 – видеоусилитель; 7 – ТВ монитор.

 

<== предыдущая лекция | следующая лекция ==>
Тепловизоры | Паяльное оборудование предприятий сервиса
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 568; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.